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-Three methods for inspecting the concrete specimens for microcracking were evaluated.
The first method was to use a scanning electron microscope (SEM) to view the concrete

A surface. We found this method to be unsatisfactory because of extensive cracking

caused by evacuating the specimen. The second method was to replicate the specimen
surface with acetylcellulose replicating film and to view the film with the SEM.
This method introduces uncertainties in identifying cracks. The third method was
to view a polished concrete surface with an optical microscope at a magnification
of 100x. This is the preferred method for observing microcrack damage produced in
the dynamic tension tests. 'Microcracks as small as 2 1im wide and 100 m long can
be seen. Better resolution could probably be attained with more highly polished
specimens. In the three 5-cm-long specimens inspected, we saw that microcracks pass
through aggregates and around aggregates, some appear to be blunted by aggregates,
and some terminate in the mortar. Nearly all of the damage was found within a d-
tance of 3 cm from the primary fracture. Inspection of additional specimens Lhat
were tested in dynamic tension is recommended.

We used the simple strain-softening model to computationally interpret two additional
* experiments. Our approach was to match the strain histories and tensile damage. The

experiments were performed on two cencretes whose static tensile strengths are about
- 3.5 MPa. One concrete has about twice the apparent dynamic strength of the other
.4 concrete. S2veral more of the experiments performed previously should be interpreted

with the strain-softening model to extend our knowledge of how the concrete behaved
-- in these experiments.

A computer progcam was developed to evaluate Kachanov's solution for stress intensity
factors, crack face displacements, and effective moduli for an elastic material con-
taining a two-dimensional array of cracks. An improvement to account for the presence
of cell boundaries is recommended.
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SUMMARY

Background

This report describes a small follow-up effort to a previous study of dynamic

tensile failure of concrete [1,2]. Our long range objective is to understand and

quantify the micromechanics of dynamic tensile failure of concrete. In the previ-

ous study, we developed an experimental technique to apply dynamic tension to

5-cm-diameter x 76-cm-long concrete rods at a strain rate of about 10/s [3]1 and

performed posttest computations with a simple one-dimensional strain-softening

model to interpret an initial set of experiments [4]'. The strain-softening compu-

tations and a preliminary posttest microscopic inspection of one of the specimens

indicated that this experiment produces distributed tensile cracking damage that

can be quantified and related to the load history. We then performed a larger

set of dynamic tension experiments intended to provide a range of damage levels

[2]. The results of these experiments and the damaged specimens are available for

further analysis.

In the current effort, our objective was to validate the experimental and ana-

lytical approach used in the previous study. Our primary task was to scrutinize

the technique for observing microcracks in damaged specimens and to quantify

the microcracks in some of the specimens already tested. A second task was to

use a strain-softening model to computationally interpret some of the previous

experiments. Finally, we made a preliminary step toward computing the strength

and modulus of a computational cell containing several interacting cracks. The

results and conclusions of these tasks are summarized below.

Previous Work

An experimental method was developed to study the tensile failure of brittle

geologic materials at strain rates of approximately 10 to 20/s (31. In these experi-

'Copies of these articles are attached as Appendices A and B.

* 1
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ments, a cylindrical rod specimen is first loaded in static triaxial compression, then

the axial pressure is released from each end simultaneously and very rapidly. The

resulting rarefaction waves interact in the center of the rod to produce a dynamic

tensile stress equal in magnitude to the original static compression. The pressure

acting on the radial surface is approximately constant during the experiment. As

an application of this method, several experiments were performed on concrete.

Transient measurements were made of the axial load at each end, the confining

pressure, and the axial and circumferential surface strains at several locations

along the length of the rod.

Usually a single fracture occurred near the midpoint of the rod. In some

experiments multiple fractures occurred. If we assume the peak observed strains

0: in these experiments to be elastic, we estimate the unconfined tensile strength

of the concrete at a strain rate of 10 to 20/s to be, on average, approximately

40% higher than the static splitting tensile strength. At the same strain rate,

the tensile strength with 10 MPa confining pressure averaged approximately 100%

higher than the static splitting tensile strength and 40% higher than the unconfined

. tensile strength at 10 to 20/s. Nonlinear analyses indicate that these estimates

are reasonable but that, in general, the assumption of elastic response is not valid.

Matrhing the measilred strain histories with calculations requires that the rod be

modeled inelastically.

A one-dimensional strain-softening model was used in wave-propagation calcu-

lations to interpret the results of the dynamic tension experiments on concrete rods

[4]. The model is based on the assumption that the stress-strain relation is not
a property of a material point (as in continuum theory) but an average property
of a finite volume of material containing a developing crack or failure plane. The

stress-strain relation thus has associated with it a finite dimension, namely the

average crack separation distance. We used this model to simulate two dynamic

unconfined tension experiments and, by trial-and-error, obtained good agreement

with the measured axial strain histories in both cases.

2
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In addition to providing an estimate of the dynamic tensile properties of the

concrete, these calculations suggest that tensile damage in the concrete was dis-

tributed over several centimeters. Finally, the calculations suggest that the strain

history measured a few centimeters from the location of fracture is primarily a

function of inelastic wave propagation from the fracture location to the strain

gage (through a region of distributed tensile damage) and is less dependent on the

behavior of the material right at the fracture.

Microscopic Inspection of Damaged Specimens

Three methods for inspecting the concrete specimens for microcracking were

evaluated. The first method was to use a scanning electron microscope (SEM)

to view the concrete surface. We found this method to be unsatisfactory because

of extensive cracking caused by evacuating the specimen. The second method

was to replicate the specimen surface with acetylcellulose replicating film and

view the film with the SEM. This method introduces uncertainties in identifying

cracks. The third method was to view a polished concrete surface with an optical

microscope at a magnification of 100x. This is the preferred method for observing

microcrack damage produced in the dynamic tension tests. Microcracks as small

as 2 jum wide and 100 j.m long can be seen. Better resolution could probably be

attained with more highly polished specimens.

In the three 5-cm-long specimens inspected, we saw that microcracks pass

through aggregates and around aggregates, some appear to be blunted by aggre-

gates, and some terminate in the mortar. Nearly all of the damage was found

within a distance of 3 cm from the primary fracture. We recommend inspection

of additional specimens that were tested in dynamic tension.

Strain-Softening Computations

The strain-softening model we use to interpret the dynamic tension experi-

ments on concrete is based on the concept that a material cell contains a single

3



site of localization (fracture) and that the fundamental property of the material is

the relation between stress and fracture volume per unit area (average crack open-

ing). Within this framework, the material cell dimension represents the spatial

freqency of localization sites in an inhomogeneous material. In the previous study,

a 0.635-cm material cell size was found to give the best agreement with measured

strains and observed fractures in the four experiments simulated.

We used the simple strain-softening model to match the strain histories and

tensile damage in dynamic tension tests on two concretes whose static tensile

strengths are about 3.5 MPa. The same 0.635-cm material cell size was chosen,

and the relation between stress and fracture volume per unit area was adjusted to

match the experimental results. The apparent dynamic strength of the concrete

used in Tests 101 to 106 is about twice as high as the dynamic strength of the

concrete used in Tests 41 to 46.

Several more of the experiments performed previously should be interpreted

with the strain-softening model to extend our knowledge of how the concrete be-

haved in these experiments. We also recommend additional study of the apparent

natural material cell size for a better understanding of its source and meaning.

Properties of a Multiply Cracked Material Cell

We developed a computer program to evaluate a solution derived by Kachanov

[7] for determining stress :ntensity factors, crack face displacements, and effective

moduli for elastic material containing a two-dimensional array of cracks. The

actual locations of the cracks in the body, and their interactions with each other

are treated. The Kachanov solution provides stress intensity factors that are within

10% of exact analytical solutions for cases with crack tip separations greater than

1% of the crack length. Hence, this analysis is useful for studying crack interactions

when the cracks are fairly near each oLhier; that is, when the cracks are approaching

coalescence and fragmentation.

4



The limitation of the Kachanov approach is in the determination of the effec-

tive moduli for a finite cell of material, because this approach does not consider

boundary conditions except those at infinity. A possible improvement to account

for the presence of cell boundaries would be to lay out a repeating set of crack

arrays so that the computational cell being considered is bounded by the symme-

try planes between the arrays of cracks. We could then construct the compliance

matrix for the central cell.

5
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MICROSCOPIC INSPECTION OF DAMAGED SPECIMENS

Specimen Preparation

Segments from some of the specimens tested in the previous project were pre-

pared as illustrated schematically in Figure 1. The 5-cm-long segments are cut

Nfrom the rod with a diamond-impregnated saw blade. Then they are potted in a

cylinder of cement paste and sectioned along a diametric plane. The face of the

sectioned segment is then polished with 600-grit sandpaper.

Because most of the microcracking is expected to have occurred within a few

centimeters of the primary fracture, we prepared specimens taken from this region

in the rods used in Tests 41 and 103. Segments taken from the top side of the

primary fracture are labeled 'TI' and 'T2' and those from the bottom side of the

fracture are labeled 'BI' and 'B2', with the numbers indicating the order of the

segments from the primary fracture. The top and bottom directions refer to the

orientation of the rod during fabrication and testing. The coordinate system used

for strain gage placement is centered at the midpoint of the rod, with the positive

axis directed toward the bottom end of the rod.

Inspection Methods

Three methods for inspecting the concrete specimens for microcracking were

evaluated. The first method, using a scanning electron microscope (SEM) to view

* the concrete surface, was found to be unsatisfactory because of extensive cracking

$ caused by evacuating the specimen. The second method, replicating the specimen

surface with acetylcellulose replicating film and viewing the film with the SEM,

introduces uncertainties in identifying cracks. The third method, viewing the

* concrete surface with an optical microscope, is the most straightforward and the

most reliable of the three, but it is limited to a lower level of magnification than

methods using the SEM.

We first attempted to inspect the concrete for microcracking damage by view-

7
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Fracture Saw Cut

I1 B2

--- I 5m cm

(a) Segment cut from concrete rod.

Saw Cut

Cement Paste

. .

(b) Potted in cement paste and sectioned.

Polished Surface

BB

(c) Polished for microscopic inspection.
RA-M-3717-1

Figure 1. Preparation of concrete specimen for microscopic inspection.
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ing the polished concrete surface with the SEM. Unfortunately, this method intro-

duces extensive damage to the concrete. Figure 2 shows a pair of SEM photographs

of a virgin concrete specimen. The network of microcracks results from evacuating

the specimen in preparation for coating it with a conductive layer (a vacuum is

also necessary for viewing with the SEM). We proved that the cracks are caused

by the vacuum by inspecting replicas of a specimen before and after evacuation

(not shown). Thus, even though other researchers have utilized this or a similar

method for microscopic inspections of concrete [5,6], we found it unsatisfactory

for our purposes.

The second method was to use acetylcellulose replicating film. When applied

with a solvent to the polished surface of the specimen, this film replicates the

surface by flowing into the cracks and voids. The film is then dried, coated with a

thin layer of gold, and viewed with an SEM. In the previous project, this method

was used to chart the microcracks in c-te specimen and produced seemingly good

results. However, upon further scrutiny i., the current study, we concluded that

there is significant uncertainty in identifying nicrocracks with the replicating film.

Figure 3 compares an SEM photograph of an acetylcellulose replica with an

optical photograph of the concrete specimen. Note that because the replica is

made face down, the photographs are reversed images of each other. The fine

white lines on the replica were identified previously as microcracks from their

cracklike appearance. The concrete specimen does not appear to have cracks at

these locations. At a magnification of 500x, a roughness indicative of surface

flaking can be seen with the optical microscope at the locations of the apparent

cracks, but a true crack is not visible. Thus, it appears that the replica accentuates

these surface features so that they resemble cracks. This can give misleading

* information, and we conclude that this method of inspection is too unreliable for

the present purpose.

The preferred method is simply to view the concrete surface directly through

an optical microscope. Figure 4 shows a photograph of a microcrack at a different

% 9
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* Figure 4. Optical microscope photograph of polished concrete specimen
4, 41-B1 showing a microcrack in mortar and aggregrate.
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location in the specimen shown in Figure 3. This crack is about 4 mm in length;

only a portion of its total length is shown in the photograph. Admittedly, the

optical photographs of the concrete are not as sharp as the SEM photographs of

replicas, but when viewed through the microscope at 100x, the concrete surface

can be seen with sufficient detail to identify without doubt cracks as small as 2 /Im

wide and 100 lm long. Larger cracks can be photographed clearly at 100x. When

the concrete surface is viewed at a magnification of 500x the surface roughness is

greater than the depth of field, but by adjusting the focus while scanning a small

area the viewer can garner additional detail. This method could be improved if

the surface of the specimen could be more highly polished and if the optics could

provide a greater depth of field.

Results

Specimens from two rods tested in the previous study and a specimen from

a virgin rod were prepared and inspected for microcracks. The previously tested

rods were made of different concretes and were preloaded to different levels. A

range of microcrack damage was observed in these specimens. No microcracks

were found in the virgin specimen.

The first specimen inspected was 41-B1. The static splitting strength of this

concrete was about 3.4 MPa. In Test 41 the static preload was a uniaxial stress of

10.8 MPa, and the rod fractured at -5.0 cm from the midpoint. This is the same rod

that we inspected previously by the replica method. However, in this investigation

-we inspected the other half of the same segment. Figure 4 shows a photograph of

this specimen, and Figure 5 shows a map of the full set of microcracks found. The

map shows that there is a concentration of damage about 2.5 cm from the primary

fracture. This is consistent with the predictions of strain-softening calculations,

as will be shown below. The long crack running in the axial direction lies along

the boundary between mortar and a long, slender aggregate.

The next rod inspected was from Test 103. The static splitting strength of

13
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Microcrack in Photograph

RA-371 7-5

Figure 5. Microcrack map of concrete specimen 41-Bl obtained with 100x
* optical microscope.
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this concrete was about 3.6 MPa. In Test 103 the static preload was 17.3 MPa;

the primary fracture occured at +2.9 cm from the midpoint. Figure 6 shows pho-

tographs taken of specimens 103-Ti and 103-B1, and the microcrack maps of these

specimens are shown in Figures 7 and 8. In 103-Ti the damage is concentrated

about 2 cm from the primary fracture; in 103-Bi there is a large crack about 3

cm from the primary fracture. Again, strain-softening calculations predicted a

concentration of damage a few centimeters from the primary fracture.

Conclusions and Recommendations

Viewing a polished concrete surface with an optical microscope at a magni-

fication of 100x is a suitable method for observing microcrack damage produced

in the dynamic tension tests. Microcracks as small as 2 tim wide and 100 usm

long can be seen. Better resolution could probably be obtained with more highly

polished specimens.

In the three 5-cm-long specimens inspected we saw that microcracks pass

through aggregates and around aggregates; some appear to be blunted by ag-

gregates; and some terminate in the mortar. Nearly all of the damage was found

within 3 cm of the primary fracture. We recommend inspection of additional

* specimens that were tested in dynamic tension so that we can relate quantified

observations of damage to known loading conditions for a range of loads.
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COMPUTATIONAL INTERPRETATION OF EXPERIMENTS

The purpose of the calculations performed in this effort is to interpret the re-

sults of the experiments. In addition to the initial conditions and the boundary

conditions, the data available from an experiment include the location of fracture

and the strain histories at a few locations on both sides of the fracture. These data

do not, in themselves, provide a direct measure of a material property. Our ap-

proach to interpreting the results is to make an estimate of the material behavior,

namely the stress-strain path followed in the experiment, and to computation-

ally simulate the experiment. By adjusting the estimate of the stress-strain path,

we can satisfactorily match the data from the experiment. Then the assumed

* stress-strain path is a reasonable estimate of the actual material response in that
experiment. Four experiments were interpreted in this manner previously. Two

more experiments were interpreted in the present effort.

Test 41

Tests 41, 42, and 43 were performed with a static uniaxial preload of about 10.5

MPa on rods made of the same concrete. In all three tests the primary fracture

was within 1 cm of the midpoint of the rod. Tests 42 and 43 were instrumented

with strain gages, and the results were matched ;reviously with computations with

a strain-softening material description [41 (Appendix B). Because posttest static

splitting tests were performed on the rods from Tests 42 and 43, specimens from

* these rods are not available for inspection for microcracks. Test 41 was performed

Jwith no instrumentation, and it was not previously simulated. In the current

effort, one 5-cm-long segment from this rod (41-B1) was inspected for microcracks

d (Figures 4 and 5). We also computed the response of Test 41 using the same

* strain-softening parameters used to simulate Tests 42 and 43. We then compared

the distribution of peak fracture volume per unit area (6) with the map of the

microcracks observcd in spccimen 41-DI.

*m Figure 9 shows the material description used to computationally simulate Test

% % - - -Zp
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41. The a - 6 relation, the 0.635-cm cell size, and the a - E relation are the same as

used for Tests 42 and 43. The location of the weak cell corresponds to the observed

location of the primary fracture in the rod (+0.7 cm). In the computation, the

weak cell failed completely and several cells on both sides of the weak cell softened

without breaking. The computed peaks of the fracture volume per unit area in

each cell corresponding to specimen 41-Bl are compared with the microcrack map

of that specimen in Figure 10. The location of the computed maximum tensile

damage agrees with the location of the observed concentration of microcracks to

within about 1 cell width.

Test 103

Tests 101 to 106 were all performed on rods made of a concrete similar to but

not the same as that used in the earlier tests [2]. The static uniaxial preload in

Test 103 was 17.3 MPa. Strain gages were used at ±2.54 cm, ±7.62 cm, and ±15.2

cm from the midpoint of the rod. Fracture occurred at +2.86 cm.

The strain histories from this test were simulated computationally using the

assumed material description shown in Figure 11. The strength is much higher

than that used in the simulations of Tests 41, 42, and 43, but the material cell

size and the critical fracture volume per unit area are about the same. Two types

of unloading were used. The one with stress and strain returning to zero implies

that all cracks close completely during unloading; the one with the unloading

slope equal to the elastic loading slope implies that the cracks remain open during

unloading.

Figure 12 shows the comparisons between the measured axial strains and those

computed with the assumed material properties. Some of the strain records were

matched better with unloading to the origin; others were matched better with

elastic unloading. This apparent inhomogeneity was also present in earlier results
[1,4].
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Figures 13 and 14 compare the computed peaks of fracture volume per unit

area computed in each cell corresponding to specimens 103-BI and 103-TI with the

microcrack maps of these two specimens. The computed concentrations of damage

at about ±2.5 cm from the primary fracture are consistent with the observations.

However, the predicted damage at about ±4.5 cm from the primary fracture was

not seen in the microscopic inspection. Perhaps we will find damage in the adjacent

specimens (103-B2 and 103-T2).

Conclusions and Recommendations

The strain-softening model we use to interpret the dynamic tension experi-

ments on concrete is based on the concept that a material cell contains a single

* site c localization (fracture) and that the fundamental property of the material is

4the relation between stress and fracture volume per unit area (average crack open-

ing). Within this framework, the material cell dimension represents the spatial

freqency of localization sites in an inhomogeneous material. In the previous study,

a 0.635-cm material cell size was found to give the best agreement with measured

strains and observed fractures in the four experiments simulated.

We used the simple strain-softening model to match the strain histories and ten-

sile damage in dynamic tension tests on two concretes with static tensile strengths

of about 3.5 MPa. We chose the same material cell size used previously (0.635-

cm) and adjusted the relation between stress and fracture volume per unit area to

'- match the experimental results. The apparent dynamic strength of the concrete

.- used in Tests 101 to 106 is about twice as high as the dynamic strength of the

concrete used in Tests 41 to 46.

Several more of the experiments performed previously should be interpreted

with the strain-softening model to extend our knowledge of how the concrete be-

haved in these experiments. We also recommend additional study of the apparent
natural material cell size for a better understanding of its source and meaning.
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COMPUTATION OF EFFECTIVE MODULI

FOR A CRACKED MATERIAL

A computational model for representing the fracturing processes in concrete

and the mechanical response of concrete to loading must contain descriptions for

the initiation, growth, and coalescence processes for cracks. In addition, it is nec-

essary to know the effective stiffness of the partially cracked material at all stages

of damage. The current study of effective moduli is an effort toward evaluating

these stiffnesses.

4: Solution for Stress Intensity Factors and Crack Openings

Kachanov [7] has constructed an approximate analysis for computing stress in-

*.
"  tensity values for arrays of cracks of arbitrary locations, lengths, and orientations

* ".in an elastic solid. The method is based on classical solutions for the stress states

around a two-dimensional flat crack in an infinite elastic body under external trac-

tions. The procedure provides for a simultaneous solution for the stress intensity

values (K and KiI) at each end of each crack in the array. With these K values,

the crack opening shape is determined. From the crack shape, the average crack

opening strain in the body can be found.

Kachanov considers an array of two-dimensional cracks embedded in an elastic
material under a remote loading (&-). The crack lengths are given by Li and the

orientations by the unit normals nii.

.I The stress acting along each crack is a superposition of the external stress field

on the stress field caused by the opening of each of the other cracks. To proceed,

Kachanov considers just two cracks and their interactions. He evaluates first the

interaction stresses au.(e) and au(e): the stresses at position e along the jth crack

generated by uniform normal and shear tractions of unit intensity along the ith

crack. These stress quantities are obtained from a standard elastic analysis of the

stresses in an infinite body resulting from normal and shearing stresses applied
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to the faces of an embedded crack (here the ith crack). To obtain the actual

stresses along the jth crack, we multiply an(C) and acr( ) by the average of the

normal or shear stresses on the ith crack: < Pi > and < ri >. This use of the

average stresses on the cracks (instead of the actual strongly varying stresses) is

the essential ingredient of Kachanov's method that simplifies the solution enough

to make it practical.

After the interaction stresses are determined, the stress state along each crack

is computed. From this stress state, the K and KII stress intensity factors are

evaluated for each crack.

Next, these stress solutions are used to evaluate the normal opening of the

crack and its shearing displacement. These procedures are given in more detail

in Appendix C. A computer program, KCRACK, was written for rout-ne evalua-

tion of stress intensity factors and crack opening. The solution procedure is also

described in Appendix C and the program is listed there.

Results are given in Appendix C for stress intensity factors for pairs of identical

cracks along the x-axis. The K values are determined as a function of the separa-

tion of the cracks and compared with exact solutions. The error in the K values

increases as the separation distance between the cracks decreases. The error is less

than 1% until the crack tip separation is less than 10% of the crack lengths [7].

At this point the K value is 45% larger than the K value computed for an isolated

crack. Therefore, it appears that Kachanov's procedure is essential for evaluating

the cracked state of a body if the crack tips are near each other.

Computation of Effective Moduli

$ When the crack stress intensity factors and the crack openings have been corn-

puted, it is possible to determine the effective moduli for a cracked body. Such
Ni moduli are termed "effective" because they provide an average of the response

of the intact elastic material around the cracks plus the response of the cracks
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themselves.

Before exploring the two-dimensional problem of computing moduli using Kacha-

nov's method, we introduce the determination of the longitudinal modulus of a rod

of elastic material with transverse cracks. This rod problem will serve to indicate

the essence of the method and assumptions behind the more complex derivation

of Kachanov. Let us examine the longitudinal stiffness of a rod with radius R and

length L with N cracks all located such that the normals to their planes are along

the axis of the rod. The cracks have radii R. Under a longitudinal stress (a),
their tensile opening is given by

4(1 - V
2 )

irE

where 6, is one-half the maximum separation of the crack faces and E and V

are Young's modulus and Poisson's ratio. The crack faces form an ellipsoid with

three semiaxes, bi, 1-, and R .Therefore, the volume of the opening of the crack

is

47rRi6l _ 16(1 -i)Rfa
3 3E

To determine an effective elongation (6,) for the crack, we average this crack

* volume over the area (7rR 2 ) of the rod.

+.b .
= 4 2= 1( 2 R~

3 R) 37rER2

- Now consider the elongation that occurs to the rod when a stress (a) is applied.

We assume that the intact elastic material is all under the same tensile stress (a)

as it would be for an uncracked rod, so the elongation is
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In addition to this elongation, we have the elongation given by all the cracks:

ALC = et 16(1 - 2 )aN 3

The effective modulus (M,) simply relates the applied stress (a) to the average

strain induced in the rod.

Cr

Me= ___ _

(AL,, + AL,)/L 1 + 16(1 - R

where V, is the volume of the rod: 7rR 2L. From the equation for M, we see

that the stiffness of the cracked rod is reduced by the factor in the denominator

that is a function of the cube of the crack radii.

In deriving the effective moduli for a cracked body, Kachanov [7,8] uses his

solution for the stress intensity factor and crack opening for an array of cracks.

He computes, one at a time, the compliance factors (Ciik), where

E~Ci -- Ciiklaki

and i . and akL are the average strain and stress on the cracked body. The

compliance term Cikl is obtained by applying the stress akj to the body, computing

all the strain and distortion quantities for the body and cracks, and summing

those which contribute to ci,. CikL is then computed by inverting the preceding
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equation. The corresponding effective stiffness matrix is computed by inverting

the compliance matrix. Details of this derivation are given in Appendix C.

With a procedure available for computing the moduli for a cracked body, we

can undertake a number of computations:

" Evaluate moduli for some cases for which there are analytical solutions.

" Compute the moduli for simple parallel arrays of cracks and compare these

results with the results of simpler procedures.

• Evaluate the moduli for arrays of cracks and determine the sensitivity of the

moduli to closeness of the cracks.

No analytical solutions were found that matched the cases possible with the
Kachanov method, so the first type of computation was not performed. The

other types of studies were undertaken, and the results are given below.

Parallel Cracks in Line. The first analysis concerns a pair of horizontal cracks

of length 1 - a with a spacing of 2a between their nearer tips. A stress (aU,) was

applied t o a block containing these cracks. The results in Figure 15 show the stress

intensity factors and compliance (C22) for a range of a values and cross-sectional

areas (S). The relative stress intensities, K1 /Ko (stress intensity at the near tip

normalized by the stress intensity for an isolated crack), increase markedly during

this interval of a values. The compliance factors increase more moderately over

*• the same range of a. These compliances are normalized such that the compliance

for a crack-free body is 1. Here the results for C22 are grouped according to the

area (S). The effect of the area can be easily accounted for as followr:

2

CS=30 = 2.(Cs=2 - 1) + 1
30

Thero'ore, the area was held constant (S = 2) in the rest of the study.
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Pairs of Cracks, One Above the Other. The next series of calculations was

made for pairs of parallel cracks, one above the other, with a spacing (b). The

results shown in Figure 16 indicate that neither the stress intensity factor nor

the compliance factor (C2 2 ) is very sensitive to the crack spacing (b). For large

spacings, the K, value would certainly approach KO, the value for an individual
e. crack. Hence, the presence of a parallel crack tends to reduce the stress intensity

factor. Similarly, the compliance is reduced when the cracks are near each other,

although the effect is not large. The compliance for the pair of cracks approaches

that for a single crack (1.318 for the present geometry), as expected.

p4 . J Four Crack Sets. The third case concerns a set of four cracks, two horizontal

and two vertical, extending directly out from the origin (as shown in Figure 17).

For large distances (a) between the crack tips, the response of this array is much

like that shown in Figure 15 for two horizontal cracks; but as the spacing decreases,

the vertical pair of cracks begins to influence the interaction. Although the stress

is applied in the a., direction only, horizontal stresses act on the vertical cracks,

causing a large stress intensity, K 2 (for this configuration K 20, the stress intensity

for a noninteract g crack, is zero). As the spacing decreases, this stress intensity

i- .of the vertical cracks increases faster than the stress intensity of the horizontal

cracks. The compliance (C22) for the noninteracting case is the same as that

: shown in Figure 15. From the symmetry of the problem, here C11 = C22 , with

or without crack interaction. Because of the importance of the vertical cracks in

the effects on the stress field, the compliance for interacting cracks increases faster

with decreasing spacing in this case than in Figure 15.

Conclusions and Recommendations

* From the simulations and the attempts to examine cases with known results,

some of the limitations of the Kachanov approach became clear. These limita-

tions are important in the determination of the effective stiffness, but not in the

determination of stress intensity factors or crack face displacements. The anal-
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I
ysis treats in detail the interaction between two or more cracks, but it does not

consider boundary conditions except those at infinity. Hence, one cannot readily

take a finite region such as a computational cell, lay out an array of cracks, and

determine the effective moduli of this assemblage. The size of the computational

cell only enters the analysis with the factor S, not with an explicit location of cell

boundaries.

A possible improvement to account for the presence of cell boundaries would

include the following steps:

" Lay out a set of crack arrays such that they repeat. For example, the set in

0 :Figure 17 could be arranged with identical sets above, below, and on both

sides of the set of interest. Then the computational cell being considered is

bounded by the symmetry planes between the sets of cracks.

" Perform the analysis as above to determine the stress intensity factors and
crack openings for all cracks.

" Construct the compliance matrix for only the central cell, using only the

cracks present in that cell.

The foregoing procedure would provide a closer approximation to the compliance

of a bounded region. Yet this procedure also suffers from the assumption that

the compliance of the matrix material around the crack is under a uniform stress

state.
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An experimental method was developed to study the tensile failure of brittle geologic materials at strain rates of
approximately 10 to 20/s. In these experiments, a cylindrical rod specimen is first loaded in static triaxial compression. then
the axial pressure is released from each end simultaneously and very rapidly. The resulting rarefaction waves interact in the
center of the rod to produce a dynamic tensile stress equal in magnitude to the original static compression. The pressure acting
on the radial surface is approximately constant during the experiment. As an application of this method, several experiments
were performed on concrete. Transient measurements were made of the axial load at each end. the confining pressure. and
axial and circumferential surface strains at several locations along the length of the rod. Usually a single fracture occurred
near the midpoint of the rod. In some experiments multiple fractures occurred. Assuming the peak observed strains in these
experiments to be elastic, the unconfined tensile strength of the concrete at a strain rate of 10 to 20/s was. on average.
approximately 40% higher than the static splitting tensile strength. At the same strain rate. the tensile strength with 10 MPa
confining pressure averaged approximately 100% higher than the static splitting tensile strength and 40% higher than the
unconfined tensile strength at 10 to 20/s. Nonlinear analyses indicate that these estimates are reasonable, but that in general
the assumption of elastic response is not valid. To match the measured strain histories with calculations requires that the rod
be modeled inelastically.

1. Introduction is a strong interaction between the applied load
and the growth of damage. Hence, an important

The study of dynamic tensile failure in geologic need in the study of dynamic tensile failure in
materials and concrete is important to many en- brittle geologic materials is to characterize the
gineering applications, such as rapid excavation, failure process for a wide range of strain rates.
in-situ fracture, and impulsive loading. It is also of Tensile failure at strain rates greater than 103/s
fundamental interest in the field of mechanics of has been observed in concrete (Gupta and Sea-
materials. Tensile failure in these materials is pro- man, 1979) and rock (Grady and Kipp, 1979) in

* duced by the nucleation, growth, and coalescence uniaxial strain plate impact experiments. Kipp,
of microcracks, and the tensile strength is the Grady, and Chen (1980) have shown that, at these
stress at which this process of accumulating very high strain rates, the tensile strength in-
damage becomes locally unstable. Most geologic creases with strain rate to the power of 1. Tensile
materials and concrete are brittle, that is, the failure at strain rates between 10/s and 100/s has
damage growth and strength reduction occur in a been produced by reflecting a compressive stress

* very short, but finite time. Details of these pulse from the free end of a long rod specimen.
processes are important in applications in which Birkimer (1968) and Goldsmith. Kenner, and
the load duration is comparable to the time re- Richetts (1968) used this method in experiments
quired for tensile failure. In such problems, there on concrete, in which the compressive pulse was"1 produced by an impact of a spherical pellet. Ab-

Present address: Department of Physics. Washington State bott and Cornish (1965) and Felix (1977) studied
University. Pullman. WA 99164, U.S.A. ceramics and oil shale, respectively, using explo-

0167-6636/87/S3.50 C 1987, Elsevier Science Publishers B.V (North-Holland)
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114 J.K Gran. Y.M. Gupta / Dynamic tensile failure experiments

sire charges to produce the compressive pulse. At 2. Experimental concept
these intermediate strain rates the tensile strength
dependence on strain rate is not understood, al- Approach
though various emperical models have beea de-
scribed (Reinhardt, 1985). Part of the difficulty is The concept underlying the experiments is to
that rod impact experiments are difficult to analyze use the interaction of rarefaction waves to produce
becatse * - loading conditions are not well de- dvnami tensile "resses in a rod-shaped specimen.
fined. An accurate specification of the loading A schematic view of the experimental technique is
conditions is needed for a quantitative analysis of shown in Fig. 1. A cylindrical rod is initially held
the data. in static compression, in both the axial and radial

The effects of loading path, including confining directions. The axial (PI) and radial (P 2 ) pres-
stresses, are also important in studies of dynamic sures are controlled separately. The radial pressure
tensile failure of geologic materials. These effects is approximately constant during the experiment.
have received minimal study, however, because The axial pressures at each end of the rod are
loading rates and loading paths cannot be varied released simultaneously, sending axial rarefaction
independently with most experimental methods. waves toward the center. Individually, these waves
In each of the studies mentioned above, only bring the rod only to zero axial stress, but when
uniaxial strain loading or uniaxial stress loading they superpose at the midpoint, they bring the rod

* was considered, to a tensile stress equal in magnitude to the origi-
In this paper we describe the development of nal axial compression. Tensile failure occurs near

.. ~ an experimental method that addresses the issues the center of the rod if the resultant tensile stress
indicated above for brittle geologic materials. The exceeds the tensile strength for these conditions.
experiment is based on the concept of the interac- Transient measurements are made of the axial
tion of two rarefaction waves to produce tensile load at each end, as well as the confining pressure
failure in a rod-shaped specimen. This experiment and axial and circumferential surface strains at
meets the following objectives: several locations along the length of the rod. The

(1) to measure the tensile response at strain pressure measurements define the boundary con-
rates between 10/s and 100/s, including the ditions. The strain measurements record the ef-
strength reduction with the growth of tensile dam- fects of the tensile failure process on the stress
age, waves propagating in the rod.

(2) to examine the effect of confining pressure Because the specimen is initially loaded in static
on tensile failure at these strain rates, and axial compression, this method is applicable to

(3) to accurately characterize the loading con- materials for which the dynamic tensile strength is
ditions. lower than the static compressive strength.

, *.. As an application of the method, we have cho-
sen to study concrete because of the current inter-
est in its dynamic properties, and because of its
similarities with geologic solids. The method is Specimen r
also applicable to hard geologic solids that are
weak in tension. Several experiments were per-
formed on concrete and selected results are pre-
sented here. Complete details of the experiments p, .... .. .. i . -\

and accompanying analyses are presented else- '.. . ..
where (Gran, 1985). P2

JA-314583 -11 A

Fig. 1. Dynamic tensile loading technique with confinement
End pressures (PI) are released rapidl,, and simultaneousl.
radial pressure (P2 ) is held.
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Wave propagation preliminaries Rarefacton Wave

The rarefaction waves propagating from the (a) o - of xroagat

ends of the rod are not step waves because the
) applied pressure decays to zero in a finite time. Compression Pr Tota, Stress

.. .-,. -_ _-- - -- -_ -- oo0 c

This fact makes it more difficult to visualize the ------------------------------
stress distributions in the region of wave interac- (b) -

tion. To illustrate and understand the complexities
introduced by the finite decay time, two idealized

examples of rod response are considered. The first ------------- -o. -- --- ----

example is an elastic rod with no failure. The-- -

second example is a rod that fractures at a single (C) -X

point but remains elastic everywhere else. This

example can also be visualized as two elastic half- ,--------0,
rods connected together by a weak bond. -

For one-dimensional linear elastic response, the (d) x

axial stress or strain distribution along the length

of the rod at any time is the solution of an initial -------------------------------

value problem for the one-dimensional wave equa-
e tion. The well-known solution of this problem is (e _ _ _ _ _ _ _ _ x

the sum of two waves traveling in opposite direc-
J, tions at the same speed (Berg and McGregor, -. --

1966). The solutions for the following examples
were obtained using the principle of superpostion. (1) X

Plots of the axial stress and strain distributions
for several times are shown in Fig. 2 for an elastic -,--
rod. For simplicity in this example, a linear decay

in applied pressure is assumed. Tensile stress is (g) x

taken to be positive. The dashed lines represent
the two rarefaction waves and the static compres-
sion. The solid line is the total stress produced by 0.

the superposition of the two rarefaction waves and (h) x

the preload. The distance the wave travels during
the time required for the pressure to drop to zero
is denoted by X. For the assumption of one-di- JA- 451-7C

mensional response to be appropriate, A should Fig. 2. Axial stress and strain distributions in a one-dimen-

be greater than a few rod diameters. In the limit- sional elastic rod with ramp unloading. Time increases from (a)

ing case of instantaneous pressure drop, the rare- to (h).

faction waves would be step waves and A wouldhi, be zero. The other terms in the figure are defined
as follows: o is the magnitude of the peak axial further, the region of tension broadens. The mid-
stress, I is the corresponding peak axial strain, point is the first point to attain the maximum

: and X is the position along the length of the rod, tensile stress, a0 . However, intermediate values of
with the origin at the midpoint, tension are attained simultaneously in a finiteThe sequence of stress distributions illustrates region. As the tension increases to oo, the region

that tension first occurs in a central region of of uniform tension becomes narrower. When the
width X, at the time when the rarefaction waves wavefronts overlap by A, the maximum tension is

have overlapped by 11X. As the waves overlap o and exists only at the midpoint. Thereafter. theF - A-S5
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0 to , 0. fo tion wave because the wavefronts do not overlap
_____ in this region. For 0 < X < !A the wavefronts over-

lap, but the average tensile strain rate varies with
distance from the origin because the times of

* arrival of the two wavefronts are staggered by
(al X= 0different amounts. The average tensile strain rate

% at the midpoint is produced by the simu",aneous
St* t, arrival of both rarefaction waves, and is twice the

1 3 a0 strain rate at the more remote locations. Thus, the
midpoint is the first point to reach the maximum
stress and it experiences the highest average tensile

I strain rate.
(b) X = - 13 X This example shows that even without tensile

failure, the stress profiles and stress histories are
0' not simple. If a, exceeds the dynamic tensile.strength, the rod will fracture somewhere within

Tension a.. .

(X t1/2 , N(a), ac o  X

'7. Compression-to ,-- -------------------------- - - - -----

Rarefaction Wave from Right End
Tensile Step Wave----. Rarefaction Wave Total

Mf r, Left End Stress
Reflection of Rarefaction Wave(d) X - : X from Free Surface Preload

Fig. 3. Stress and strain histories in a one-dimensional elastic
rod with ramp unloading. (c.

] (c) ,x

region of maximum tension expands. - - - -- -
For this example, stress and strain histories at 1/4 X (1 - a) o

several points are plotted in Fig. 3. This figure
shows that the stress history is different at every 1/2 f 010. x
point (except pairs of points symmetrically located

* with respect to the origin). However, points that ................

simultaneously reach intermediate values of ten- o-----------
sion also experience the same tensile stress history () ,
(and tensile strain rate) up to that time. For
example, all points between ± 1A reach a tension
of 0 simultaneously. They also have the same

* stress history from the time they reach zero stress ----,-

until the time they reach 'a. .  (1) X
The average tensile strain rate-the peak tensile

o strain divided by the rise time from zero strain- -.....
varies with position. The average tensile strain rate Fig. 4. Stress distributions in an ideally brittle rod Aith ramp
for X 2X is that produced by a single rarefac- unloading. Time increases from (a) to (f).
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a Oiwave from the new free surface, and the step wave
required to satisfy the new stress-free boundary

A 0 0 condition. The solid line is the total stress ob-
tained by summation.

Figure 4(a) shows the stress di.tribution just

0 iLoca to of Falurel before fracture. Figures 4(b) through 4(f) show the
stress distributions after fracture. Although frac-
ture is assumed to occur at the origin in this

, 2 3 ao, example, the figure illustrates that, at the time of

1021 fracture, the critical stress exists throughout the2 central region of width X(1 -a). When fracture
occurs, the stress at the midpoint immediately
drops to zero, but the stress at the other points in

(b) X = ± 1,3 X the central region continues to increase. This is
because the stress wave emanating from the frac-

o l ture propagates at the same velocity as all the
2,310o other waves. Until the effect of the fracture propa-

gates to a given point, the stress at that point
continues to increase as if fracture has not oc-
curred. The portion of the rarefaction wave that
has already propagated past the midpoint by the

(c) X =- 1/2 time fracture occurs has a peak of (1 + ao o.

which exceeds aoo for a < 1. That is. if no other
,1 fracture occurs, the stress at every point except the
I 2.3 co midpoint will exceed the critical stress.

. The stress histories at several points in this

example are plotted in Fig. 5. The peak stress at
the midpoint is less than the peak stress at every

(d) X--X other point. The average :nsile strain rate at the
midpoint is equal to or grcater than the average

Fig. 5. Stress histories in an ideally brittle rod with ramp tensile strain rate at every other point. The maxi-
unloading, mum tensile stress 1(1 + a)o o occurs first at 12V

The average tensile strain rate at this point is half
that at the midpoint. The tensile stress history is

the finite region that reaches the critical stress different at every point between the origin and 1X.
simultaneously, making subsequent stress profiles The tensile stress history at all other points is the

* and stress histories even more complicated. same as at 1X.
To illustrate the effect of fracture, an example The preceding examples are oversimplifications

with fracture occurring at the midpoint is il- of the response of real materials in this type of
lustrated in Figs. 4 and 5. In this example, the experiment, but they provide an insight into more
fracture is assumed to be ideally brittle and to complex situations. The stress histories and stress
occur instantaneously when a critical stress is re- distributions in these examples indicate that there

* ached. It is also assumed that the rod remains are a variety of possible load histories leading to
elastic at every point except the midpoint. The failure and suggest that multiple fracture is likely
critical stress for fracture is assumed to be aoo. to occur in some cases. Experiments in which only

N where 0 < a < 1. The plots are drawn for a = 1. one fracture occurs are desirable because interpre-
The dashed lines are the static preload, the rare- tations of them are much more straightforu ard.
faction waves, the reflection of one rarefaction The type of load to failure and the likelihood of
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~multiple fracture depends on the magnitude of the- -rwuw"n preload in relation to the tensile Strength a h.. [ nd the

rate dependence of the tensile properties of the Reaction
,. , rod. In experiments with a preload that is only Plate L i--

"" ~slightly higher than that required to produce dy- Saenamicfailure during the rise of the tensile stress, D m cer 5xere

Exposvesestnghadh
the width of the region that first reaches the Removed !

xcritical stress is mini hized and so is the likeshood Rang 3 c,
of multiple fracture. Support

Tu5 c
Piston

3. Experimental method Bore Block 13c

Chamber -. ____
Apparatus O-Ring

Bas Sleeve '"/ i'

Figure 6 shows a photograph of the apparatus
developed to perform experiments of the type just Spacer

discussed. This apparatus tests 5.1 cm-diameter,
76.2 cm-long rods at stresses up to 20 MPa. The Specimen .•
static end pressure is removed in about 30 his,
producing unloading strain rates in concrete of

U' L..'. about 10/s. I
The essential component of the tensile testing

apparatus is the unloading device at each end of
the rod. Its design is shown in Fig. 7. It consists of 5.1 cm

a bored aluminum block into which the end of a Fig. 7. Unloading device.
rod specimen and a plastic piston fit to form a
chamber for oil. The oil is pressurized by means of The support tube comprises three sections. one of
a ,mall orifice through the wall of the bore block, which is a segmented ring that is explosively driven
The rod and piston seal the pressurized oil in the inward to free the piston and initiate decompres-
chamber with rubber O-rings. The piston is held sion of the oil. The rod is held in place b, an
in place by a thin-walled steel support tube, which identical unit at the other end, with the two blocks
presses against a reaction plate bolted to the block, bolted together.

L

o ,1

Fig. 6. Dynamic tension testing apparatus with an unconfined concrete rod.
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The rings in the support tubes are removed 12

with an estimated simultaneity of less than 5 lcs 10'

using strands of sheet explosive. The explosive 8-
produces no damage to the apparatus except to
the rings, and allows a smooth decay of pressure 2 6-

in the oil chamber. Occasionally a small compres- cc,4-

sive precursor is produced by the explosive pres- ,

sure. cc 2 "

In experiments without confinement, a Plexi- 0 ,, ..

glas tube is used to space the two unloading ,

devices, as shown in Fig. 6. In experiments with -2 -

confinement, a 7.6 cm-ID aluminum tube is used 0.1 015 02 0.25 03 035
to hold the confining pressure and to space the TIME (ns)

unloading devices. The confining pressure remains (a) End Pressure at -38 1 cm

approximately constant during an experiment, but 12

it is perturbed slightly by the the radial motion of 10
the rod produced by the stress waves.

8S

'-.- Measurements 8- -

cc 4
- ' The pressure in the chamber at each end of the W

rod and in the confining pressure chamber sur- c 2.-
,C,

rounding the rod were measured as a function of 0
time. The measurements were made with commer- ",
cially available diaphragm-type pressure gages -2-

(Kulite HKS-375). 01 015 02 025 03 035
Examples of typical transient pressure histories TIME (ms)

are shown in Fig. 8. Figures 8(a) and 8(b) show (b) End Pressure at *38 1 cm

that in this experiment the axial unloading oc- 12

curred in about 25 ps and was simultaneous at the
two ends. The radial pressure, shown in Fig. 8(c), °.-.--
was constant until the stress waves in the rod s--

reached the gage location (midpoint of the rod), Fluctuations Caused6- by Radial Motion
and remained within 1 MPa of the initial value. I . of the Rod

The variation in radial pressure appears to follow = 4-

the circumferential strain (not shown), suggesting '
that the pressure variation is caused by volume
changes in the specimen, produced by the Poisson 01
effect as the axial stress wave propagates along the
rod. This result shows that a one-dimensional
wave analysis is not rigorously correct for these 025 03 035 04 045 05

TIME (ml)
experiments because the radial stress is coupled to (c) Confining Pressure at Micdoont

the axial stress. Fig. 8. Pressure measurements in experiment 3 (10 31 hNdro-

Axial and circumferential strains were mea- static preload).
sured at several axial locations on the surface of
the rod, using commercially available 2.5 cm-long suits in considerable averaging of strain but. for
foil-type strain gages (Micromeasurements MM- an inhomogeneous material such as concrete, the
EA-06-IOCBE-120). This length of strain gage re- averaging is necessary. Each measurement was
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120 J. K. Gran, Y. M Gupta / Dynamic tensle failure experiments

made by averaging the outputs from three gages
mounted on 120 degree intervals at the same axial 4o-

position. Averaging these three measurements
eliminates bending contributions to the strain z 200-

caused by small curvature in the rods. Axial strain cc / "
was measured at four locations: 10 cm from each 0 a ... .
end of the rod and 7.6 cm from the midpoint on ', .
both halves of the rod. Circumferential strain was 20-200 -

measured at only the symmetric points 7.6 cm--from the midpoint. -400-

Concrete rod specimens 025 0.3 035 0.4 045 05

TIME Ims,

The concrete tested in the current work was (t nv, a Stra,,s

made from graded aggregate, Portland cement,
and water. The aggregate was local river rock with 400 --

rounded shapes. meeting the ASTM C33 specifica- Expeted Stray-

tion for size distribution. It was sieved to remove W t'r'oA Tens,e

all aggregates not passing a 0.635 cm (4 inch) z w.0ho0 t onevo; o .---
opening. The average static compressive strength c _"___"

* -was about 60 MPa. and the average splitting tensile 0• -- _ _--- _ __

strength was about 3.4 MPa. The average elastic Y '* Effect of Geomet'.
modulus was 25 MPa, and Poisson's ratio was 0.2. -200- D,spes o,

The rods were cast about 90 cm long, and then
trimmed to 76.2 cm. Brass sleeves, measuring 2.5 -a00- /

cm long and 0.04 cm in thickness, were epoxied on -- -- _ _ _

to the rods at each end. These sleeves were the 025 03 0.3 s 04 045 0s

sealing surfaces for the O-rings in the testing
apparatus. Ib) Average Strain

Fig. 9. Axial strain records at -7.6 cm (7.1 cm from fracture
location) in experiment 1 (10.55 MPa uniaxial preload).

.preload of 10.55 MPa. Both rods failed in d\-

The four experiments described in this paper namic tension at a single location within 0.5 cm
are listed in Table 1. In all of the experiments the from the midpoint, and no secondary damage was
strain rate in the front of the rarefaction waves visible.
was about 10/s, so the strain rate in the region of The axial strain histories from Experiment I
superposition of the waves was about 20/s. Usu- measured at the ±7.6 cm locations (referenced

ally a single fracture occurred near the midpoint from the midpoint of the rod) are shown in Figs. 9
of the rod. In some experiments multiple fractures and 10. Some of the effects of inhomogeneit\ in
occurred. Based on measurements of axial strains the specimen were eliminated by scaling the re-
on the concrete rods, the observed strength en- corded strain signals to make the initial strains

[ hancement at this strain rate was considerable. (from the static preload) at each location equal to

the average of all the initial strains. On the time
Experiments on unconfined rods scale of these plots, the explosive charge was ini-

tiated at t = 0.100 ms. Geometric dispersion in the
Experiments I and 2 were performed on con- rarefaction waves as they propagate from the ends

crete rods with no confinement and a static axial of the rod to these locations causes the oscillation
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400- - 400

200-- -200-
Q: z

C, -N ;

0" 0 _ _ _ _ _ _ -0- -0-

200 -200- /VP''" -200- / - 20

-4 (,) - - 400 -

025 03 035 0 4 045 05 025003 0jS 04 045 0 5

TIME ins'
(a) Individual Strains (a) Individual Stra,ns

400- '--,ExpectedStrain -

Expected Stra- / Without Tensile
z 200-- WthOu Dspesion -Failure - 200-

Z~~~~~~~~ 20200., '~'~n -~

0 C 0- --

-200- Effect of Geometric - -200-
Dsierson

-400- --400-

025 03 035 04 045 0.5 025 03 035 04 045 05
TIME ms) TIME iflrsl

(b) Average Strain (b) Average Strain

Fig. 10. Axial strain records at 7.6 cm (8.1 cm from fracture Fig. 11. Axial strain records at -7.6 cm (7.5 cm from fracture
location) in experiment 1 (10.55 MPa uniaxial preload). location) in experiment 2 (10.55 MPa uruaxaI preload.)

in the strain records just before the arrival of the The peak average strain at + 7.6 cm (8.1 cm from
second wave. The strain rate at the front of the the failure location) was 210 microstrain. Assum-
rarefaction waves was about 10/s, so the strain ing linear elastic response at the gage locations
rate at the failure location was about 20/s. and using the static elastic constants for the con-

The axial strains show the effect of tensile crete, the higher of these measurements corre-
" failure at about t = 0.380 ms. when the tensile sponds to an axial stress of about 5 MPa. near]\

strains reach a peak and no longer follow the 50% higher than the average static splitting tensile
history expected for elastic response. The three strength for this family of rods.
individual strains at both locations are fairly uni- The axial strains measured in Experiment 2 at
form even after the effects of tensile failure arrive. +7.6 cm are shown in Figs. 11 and 12. The
After fracture, the stress waves propagate and individual strains show wider variations than those
reflect in the two separated half-rods with stress- in Experiment 1, especially after the effects of
free ends. However, reflections do not return to tensile failure arrive. However the average strains
these locations during the time period shown in are very nearly the same as those in the previous
these figures. experiment. The peak average strain at -7.6 cm

The peak average strain at -7.6 cm (7.1 cm (7.5 cm from the failure location) was 170 micro-
from the failure location) was 160 microstrain. strain, and at + 7.6 cm (7.7 cm from the failure
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122 J. K Gran, Y. M Gupta /Dynamic tensile failure experiments

would be high in both cases but not necessaril\ b,
400 - - the same amount.)

Z 200- /
4 Experiments on confined rods

0
S/ ~"'--/ -- Experiments 3 and 4 were performed on con-

-200- crete rods with hydrostatic preloads of 10.31 MPa
and 10.20 MPa, respectively. The rod in Experi-

400-ment 3 failed in dynamic tension at two locations.-400-
+ 2.2 cm and - 15.2 cm. No large voids existed at

0 25 03 035 04 045 0.5 either section. The rod in Experiment 4 failed onl
TIME (ms) at -3.8 cm. One fairly large void (0.8 cm diam-

(a) Iflhvidual Strans eter) was evident at the failed section.

Plots of the average axial strains at + 7.6 cm in
400- Experiment 3 are shown in Fig. 13. The axial

z 200-

4 0 0 s L

0 0a

-200-0
-400- 2000

-0
0.25 0.3 0.35 04 045 0.5 -200

TIME (ms)
Fiat S rIate

(b Average Strain -400 a -15 2 c-

Fig. 12. Axial strain records at 7.6 cm (7.7 cm from fracture ___

location) in experiment 2 (10.55 MPa uniaxial preload.) 0.25 0.3 0.35 0.4 045 0.5
TIME (ms)

Ia) X - -7.6 cm (9.8 cm from primary fracture)

location) it was 190 microstrain. The elastic axial I I I

stress corresponding to the highest measured strain 400-

is about 4.7 MPa, about 40% higher than the
average static splitting tensile strength for this 200

* family of rods.
For a material like concrete, the waveforms and 0 0 __-

peak strains measured in Experiments 1 and 2
demonstrate very good reproduciblity of the re- a -200

',6 1 suits. It is recognized, however, that the 40-50%
estimated strength enhancement is much less than -4

* the 400% enhancement reported by Birkimer , ,
(1968) for these strain rates. This contrast may 0.25 03 0.35 04 045 05

simply reflect the differences between the materi- TIME 'ms)

als tested. It may also be associated with the W X - 7.6 cm (5 4 cm from prmarv fractu,e

assumption of elastic strains. (If the measured Fig. 13. Average axial strains at ±7.6 cm in experiment 3

strains were inelastic, the estimates of strength (10.31 MPa hydrostatic preload).
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Table 1

Dynaric tension experiments on concrete rods

Expenment Axial preload Radial preload Elastic modulus 2 Dynamic tensile Fracture locations
number (MPa) (MPa) (GPa) strength ' (MPa) (cm from rridpoint)

1 10.55 0.0 24.1 5.0 +0.46
2 10.55 0.0 24.7 4.7 +0.10
3 10.31 10.31 2S.4 6.9 - 15.2. + 2.2
4 10.20 10.20 23.0 6.7 -3.8
I These experiments were originally titled Test 42. 43, 44. and 46, respectively (Gran. 1985).
2 The elastic constants were determined from the static preload and the average initial strains.

I These are estimates corresponding to the elastic stresses computed from the peak measured tensile strains.

strain corresponding to zero axial stress is 145 40% higher than the unconfined tensile strength at
microstrain. The failure at +2.2 cm produced the the same strain rate, observed in Experiments I
drop in axial strains at ± 7.6 cm at about t = 0.380 and 2.
ms. The fracture at - 15.2 cm produced a new free In Experiment 4, the unloading device at one
surface there, and the rarefaction wave reflected end did not perform properly. The pressure
from this section and returned to the strain gages dropped smoothly in about 30 .s, but it remained
at - 7.6 cm. The other half of the rod remained at zero for only about 50 4s before recompression
intact, so no reflections from the end of the rod occurred. Posttest inspection of the unloading de-
returned during this period. vice at this end showed that the segmented ing

.J. The peak average strain at - 7.6 cm was 390 was only partially removed by the explosive and
_ microstrain. At +7.6 cm it was 315 microstrain. was trapped between the support tube and the

-e Again assuming linear elastic response at the gage spacer. Apparently, this limited the travel of the
locations, using the elastic modulus given in Table piston so that the extension of the rod recom-
1, and accounting for the nominal radial stress of pressed the oil. In addition to this problem. the
10.20 MPa, these axial strains correspond to axial strain gages at + 7.6 cm did not function.
stresses of about 6.9 MPa and 5.6 MPa, respec- The axial strain measured at -7.6 cm in Ex-
tively. The higher of these stresses is about 100% periment 4 is shown in Fig. 14. The wavefront of
greater than the average static splitting tensile the first rarefaction shows a longer rise time than
strength for this family of rods. It is also about was typical of the waves in previous experiments.

possibly because of the malfunction of the unload-
ing device. However, after the arrival of the sec-
ond rarefaction wave (beginning at about t = 0.365

400- / ms), the tensile strain rate is about the same as in

Experiment 3. The peak axial strain is 470 micro-

z 200- strain, corresponding to an elastic axial stress of
< 6.7 MPa. This is about the same as that computed

from the strains in Experiment 3 (the elastic mod-" = 4 ' uli were significantly different).
% / Thus, although there were difficulties with

-200". RLon, ,se Tne multiple fracture, malfunctions of the unloading.1. ,<.'--- . . ' Tha, in Prtvous Tests
T noI device, and loss of some strain records, Experi-

-400- ments 3 and 4 demonstrated the capability of the

- 025 03 0.35 04 04 05s experimental technique to produce tensile failure
V%_TIME mi at a strain rate of 10 to 20/s with independently

Fig 14. Average axial strain at - 76 cm (3.8 cm from fracture) controlled confining pressure. The surprising re-
in expenment 4 (10.31 MPa hydrostatic preload.) suit that the apparent dynamic tensile strength is
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enhanced by the confinement is in contrast to locations where the inelasticity was slight. so that
static data, e.g. (Saucier, 1974). but no other dy- in this case the estimates of strength are reasona-
namic data are available for comparison. ble. The nonlinear analyses performed by Gran

(1985) will be described in a subsequent paper.
Even without nonlinear analyses, however, these

5. Interpretation of the results experiments show that the assumption of elastic
response everywhere except at the failure location

Assuming the peak observed strains in these is not valid, even when only one section was
experiments to be elastic, the unconfined tensile visibly damaged. According to that assumption. as
strength of the concrete at a strain rate of 10 to depicted in Fig. 4, the observed peak strain should
20/s averaged over 40% higher than the static be 1(1 + a) times the prestrain, where a is the
splitting tensile strength. At the same strain rate, ratio of the strength to the preload. That is. the
the tensile strength with 10 MPa confining pres- observed peak strain should never be less than
sure was, on average, about 100% higher than the half the prestrain, even when the strength-to-pre-
static splitting tensile strength, and about 40% load ratio is zero. (The measurements need to be
higher than the unconfined tensile strength at 10 made at distances greater than 1X(1 - a) from the
to 20/s. failure location in order to not be limited by

These strength estimates are based on the as- residual pre-compression.) The observed peak
sumption that the measured strains are elastic, but strains in the unconfined experiment were all less

* this assumption may not be justified. Thus, to than half the prestrain, and the aaeasurement loca-
further interpret the experimental results wave- tions were well outside the region where the strain
propagation calculations were performed using a would be limited by residual precompression.
one-dimensional strain-softening model (Gran, Similarly, in the confined experiments the peak

, 1985). The model is based on the assumption that observed strains at ±7.6 cm would correspond to
the stress-strain relation is not a property of a stresses equal to (1 + a)a0 . For peak stresses of.
material point, but is an average property of a say, 6.8 MPa (computed from the peak measured
finite volume of material containing a developing strains) and an intitial preload of 10 MPa. a
crack or failure plane. The stress-strain relation would be 0.36. The strength at the failure loca-
thus has associated with it a finite dimension, tion, given by ao0  would only be 3.6 MPa. or
namely the average crack separation distance, about half the peak stress occurring remote from
Using this model, the two dynamic unconfined the failure location as estimated from measured
tension experiments were simulated, and by trial- strains.
and-error good agreement with the measured Thus, estimates of tensile strength based on
strains was obtained in both cases. elastic wave analyses are, in general, not valid for

Whereas the dynamic experiments produced a this type of experiment.
single fracture plane with no visible secondary

*. pdamage, the calculations predicted some inelastic
strain to occur virtually thoughout the specimen, 6. Summary and conclusions
with concentrations of inelastic strain within a few
centimeters of the locations of complete fracture. An experimental technique to measure the
In addition, the calculations suggest that the strain tensile response of brittle geologic solids at strain
history measured a few centimeters from the loca- rates of approximately 10 to 20/s was developed
tion of fracture is primarily a function of inelastic and applied to concrete rod specimens. In all of
wave propagation from the fracture location to the the experiments the primary failure location oc-
strain gage (through the sites of concentrated in- curred within a few centimeters of the midpoint of
elastic strain), and is less dependent on the behav- the rod. In some of the experiments a second
ior of the material right at the fracture. However, failure occurred near one quarter-point. Successful
they also showed that the strains were measured at measurements were made of the applied pressures
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STRAIN-SOFTENING CALCULATIONS FOR CONCRETE

IN DYNAMIC UNIAXIAL TENSION

By James K. Gran i and Lynn Seaman 2, M.ASCE

ABSTRACT: A one-dimensional strain-softening model was used in wave-propagation
calculations to interpret dynamic unconfined tension experiments on concrete rods. The
model is based on the assumption that the stress-strain relation is not a property of a
material point, but is an average property of a finite volume of material containing a
developing crack or failure plane. The stress-strain relation has associated with it a finite
dimension, namely an effective crack separation distance. Two experiments were simu-
lated, and with suitable choice of the material parameters good agreement with the meas-
ured axial strain histories was obtained in both cases. In addition to providing an estimate
of the dynamic tensile properties of the concrete, these calculations suggest that tensile
damage in the concrete was distributed over several centimeters surrounding the location of
fracture. The strain history measured a few centimeters from the fracture appears to be
primarily a function of inelastic wave propagation from the fracture to the strain gage, and
is only weakly dependent on the behavior of the material at the location of complete frac-
ture.

SUMMARY: A one-dimensional strain-softening model was used in wave-propagation
calculations to interpret results of dynamic tension experiments on concrete rods. Two
dynamic unconfined tension experiments were simulated, and good agreement with the
measured axial strain histories was obtained in both cases.
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ing, damage
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INTRODUCTION

Tensile failure in concrete and brittle geologic materials results from the growth and
coalesence of tensile microcracks with a corresponding loss of tensile strength. The under-
standing and quantification of this failure process are currently not sufficient to provide a
detailed micromechanical model. This situation prompts the use of so-called continuum
strain-softening models in numerical simulations of tensile failure. These models allow
decreasing stress with increasing strain by averaging over a finite region the deformation
associated with cracking.

Some notable examples of continuum strain-softening models that have been utilized
successfully to describe quasi-static experimental behavior are the line crack model intro-
duced by Hillerborg, et al (1976), the crack band model of Bazant and Oh (1983), and the
composite fracture model developed by Willam, et al (1984). As pointed out by Ottosen
(1986), each of these models has the necessary feature that a fundamental relationship
between stress and displacement across a softening zone is preserved as the size of the
numerical cell containing the softening zone is varied. Bazant (1976) concluded that the
proper size of the softening cell must be determined experimentally.

* Recently, the proper construction and use of strain-softening models for dynamic
problems has been a topic of considerable interest. Sandler and Wright (1984) demon-
strated with numerical and analytical examples that any attempt to model uniform deforma-
tion in a rate-independent strain-softening continuum will always result in an unbounded
strain concentration. Belytschko and Bazant (1984) also used numerical and analytical
examples to show that for a given stress-strain relation with softening, the calculated work
done to fail the material is cell-size dependent. Furthermore, as the cell size tends to zero,
the work also tends to zero, which is certainly not a physically plausible result. Both of
these studies considered only softening continuua, that is, rather than preserving a stress-
displacement relationship across a softening zone, these models preserve a stress-strain
relationship as the size of the cell is varied. A conclusion of both studies is that such a
model is physically implausible.

This paper describes an attempt to apply a one-dimensional model of the Hillerborg-
Bazant-Willam type to a dynamic problem, and to assess the ability of the model to repro-
duce dynamic experimental observations. We assume that the physical source of strain

0 softening is tensile cracking, that the deformation is naturally concentrated at the cracks,
and that the stress versus crack-opening relation is a fundamental property of the material.
In addition, we assume that the softening stress-strain relation is not a property of a
material point, but is an average property of a finite volume of material containing a
developing crack or failure plane. The stress-strain relation thus has associated with it a

* characteristic finite dimension, namely the effective crack separation distance.

- The strain-softening calculations described here were guided by experiments per-
formed by Gran et al (1987), whose experimental technique is illustrated in Figure 1. With
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Figure 1. Dynamic tensile loading technique.
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this technique a cylindrical concrete rod specimen is first loaded in static umaxial compres-
sion, then the axial load is released from each end simultaneously and very rapidly. The
resulting relief waves interact in the center of the rod to produce a dynamic tensile stress
equal in magnitude to the original static compression at a strain rate of 10/s to 20/s. Typi-
cally in these experiments, a single complete fracture across the rod occurs near the mid-
point of the rod. Transient measurements are made of the axial load at each end of the rod
and of axial and circumferential surface strains at several locations along the length of the
rod. An example of axial strain measurements from a typical experiment is shown in Fig-
ure 2. The static compressive preload in this experiment was 10 MPa; the nominal static
tensile strength of the concrete was 3.4 MPa. The strains shown in Figure 2 were meas-
ured at symmetric locations 7.62 cm from the midpoint of the rod using three 2.54-cm-long
strain gages at each location. A single complete fracture across the rod occurred at 0.1 cm
from the midpoint of the rod, but no other macroscopic tensile damage was visible.

These experimental results do not give directly the strength of the concrete or the
strength reduction as a function of accumulating tensile damage. Thus, the objective of the
calculations described in this paper is to estimate for these experiments the tensile strength
and the strength reduction as a function of accumulating damage exhibited by pertinent

- regions of the concrete specimens. The analyses were performed by numerically integrat-
ing the governing equations for stress waves in the rod, using an assumed strain-softening
response. By comparing the computed strain histories with the measurements from the
experiments, the assumed strain-softening response was adjusted to give good correlation
with the observations. Although this exercise does not produce a unique constitutive
model for concrete tensile failure, it does provide insight into the dynamic tensile failure of
concrete by making an estimate of what must have happened in the neighborhood of the
complete fracture location--a part of the response that cannot be measured directly.

FORMULATION OF THE STRAIN-SOFTENING MODEL

Our approach is to assume that the rod comprises a single row of one-dimensional
material cells, each containing a single potential fracture plane (crack). The analytical
model used for tensile failure is simply a prescribed relation between the stress in a cell

,1 rand the fracture volume per unit area (crack opening) created during the failure process. A
- pictorial representation of the assumed failure process is shown in Figure 3. The material

is initially elastic with modulus E, that of intact material. Fracture volume per unit area
(5) is created only after the stress reaches the tensile strength (a0 ). Then under continued
tensile strain, the fracture volume per unit area increases to a critical value (8c) as the
strength is reduced to zero, resulting in complete fracture. Note that 8 has the units of dis-

z placement and can be regarded as an effective crack opening. The relation between a and
. (for loading and unloading) is a basic property.

The initial length of the material cell is 10. This is a characteristic dimension of the

0 material and can be regarded as an effective crack spacing in this one-dimensional
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Figure 3. Concept of the one-dimensional tensile failure model.
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formulation. The source of the effective crack spacing may be the distribution of aggregate
grains as crack nucleation sites. Another source of effective crack spacing could be
stress-wave interactions that permit the growth of only those cracks that are sufficiently
separated, as suggested by the work of Kipp and Grady (1985).

An example of a relation between a and 6 is shown in Figure 4(a) as Y(8). In this
example, the strength shows no increase beyond the initial strength and decays to zero
linearly. Unloading and reloading follow a straight line leading to and from the origin,
implying that some of the work expended in creating the fracture is recoverable. As
shown in Figure 4(b), the strain value corresponding to complete separation depends on the
original dimensions of the fracturing cell. That is, for a given relation between stress and
fracture volume per unit area, the relation between stress and strain depends on the crack
spacing (cell size) assumed in the numerical discretization.

As mentioned above, when implemented as a stress-strain relation, this model is
essentially the same as those described by Hillerborg, et al (1976), Bazant (1976), and Wil-
lam, et al (1984). In the softening regime (e>Co/E), the fracture volume per unit area is
8 = (E - (/E)I 0. In general, the stress reduction is given by 0(5), and the stress-strain rela-
tion is obtained by inserting the expression for 8 and solving for 0(e). For the special

L. , case of linear stress reduction shown in Figure 4 the softening stress-strain relation is

F-0Cr=E (Cul -'=E) (1)

-ult -CO

which depends on l0 through the definition of ult= 5c/10. An explicit expression for 6 in
terms of C is then

to', (e-) (2)
Cult - eo

To summarize, the tensile failure model is defined by the elastic modulus E, the strength
-0, the relation between stress and fracture volume per unit area a(8), and the effective
crack spacing 10.

0,: , Even though the stress-strain relation depends on the cell size, the work done per unit
area to completely fracture a cell is independent of the cell size because all the work goes
into creating the fracture, and the elastic material returns to a state of zero internal energy.
For linear softening the work done per unit area to completely fracture a cell is
Gc = G06c/2. Thus, the work done per unit area to completely fracture a cell depends only
on the critical stress and the critical fracture volume per unit area, and does not depend on
the cell size.

However, if a cell is only partially damaged, that is strained to emax, where £max<Sult,
then the unrecovered work per unit area for linear unloading to the origin is

G'= -Lo c,  (3)2 (eC t-Co)
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Figure 4. Implementation of the tensile failure model as a strain-softening
model.
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which depends on 10 through eult. This dependence occurs because for a given maximum
strain the maximum fracture volume per unit area (crack opening) depends on the cell size
(crack spacing), as given in equation (2).

It should be expected, therefore, that strains calculated with this model in wave-
propagation analyses will depend on the cell size (crack spacing) chosen for the calcula-
tion. Indeed, because the cell size represents an allowed crack spacing, it is a material
parameter that must be determined. This crack spacing is similar to the crack band width
w C, considered by Bazant and Oh (1983). Consequently, as part of the parameter study
with the tensile failure model, a study was made of cell size dependence. Ottosen's (1986)
restriction on cell size, namely that 10<2GeE/o2, is satisfied by requiring that Eult>eo.

Finally, we point out that the model for the failure process used here is not rate
dependent. Although we believe the true response to be rate dependent, the range of strain
rates in the experiments under study is not more than a factor of 2 (10/s to 20/s). Thus, as
a simplification, rate dependence has not been included explicitly, although the parameters
chosen by trial and error to match the experimental results define our estimate of the
material behavior at strain rates of 10/s to 20/s.

PARAMETER STUDY

Several one-dimensional stress wave-propagation calculations were performed using a
finite-difference scheme (Seaman, 1978) to integrate the governing equations. These calcu-
lations illustrate the sensitivity of the numerical results to the parameters defining the
assumed strain-softening properties. In one set of calculations, the priperties of the
material at the location of complete fracture were varied while the properties in the rest of
the rod remained fixed. This set of calculations establishes requirements for controlling the
location of complete fracture. In another set of calculations, the unloading modulus was
varied to determine its effect on calculated strain histories. In a third set of calculations,

the cell size was varied as the O(S) relation remained fixed. These sets of calculations
demonstrate the qualitative nature of the model.

4I The correlation of the predictions with the experimental results was made by compar-
* ing the calculated axial strains with the measurments made in an experiment by Gran, et al

(1987). The strain histories from the selected experiment were shown in Figure 2. The
peak strain (measured 7.7 cm from the location of complete fracture) was 190 microstrain,
which, if elastic, would correspond to an axial stress of about 4.7 MPa (40% greater than
the static strength). In each calculation, a static preload of 10.20 MPa was applied at each

A end of the rod, and removed with an exponential decay with a time constant of 15 pts.

Variation of the Properties at the Location of Complete Fracture

In Calculation A every cell in the rod was given the property shown in Figure 5(a)
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labeled "Softening". The cell width was 0.333 cm and the fracture volume per unit area at
complete separation was about 7.Lm. The predicted stress and strain histories for this cal-
culation are not shown because a single complete fracture at the origin did not occur, mak-
ing a comparison with the experimental results meaningless. Complete fracture was com-
puted to occur at four locations, 0.66 cm and 3.33 cm from the origin in both halves of the
rod. A segment of the rod about 4 cm long had a fairly uniform stress distribution at the
time the assumed strength was first reached. Apparently, numerical perturbations in the
unloading waveform caused the stress to first exceed the strength at a point other than the
origin.

This result demonstrates that if all the cells have the same strength and the same
strain-softening relation, the calculated location of complete fracture is determined by
numerical perturbations in the load. It also implies that experiments in which the loading is
presumably symmetric, but in which complete fracture occurs at an asymmetric location (a
likely occurrence) cannot be correctly represented with uniform properties along the length
of the rod. However, we know that the properties of the concrete are non-uniform. Con-
sequently, in the experiment, the location of complete fracture is controlled by the
existence of a locally weak section near the midpoint. Unloading from this fracture
quenches the growth of cracks at other potential fracture locations. (This would also be
true in a static experiment, that is, the weakest section in the specimen would control the
location of failure. All other locations would unload at the time of failure.) Thus, we
adopt the standard practice of introducing a perturbation to the specimen to induce strain
localization at the desired location.

Calculation B was performed to demonstrate how the properties at the origin can be
modified to ensure that complete fracture occurs only at the origin. The rod was modeled
with the "Softening" relation used before, but the cell at the origin was given 80% of the
strength of the cells in the rest of the rod, using the strain-softening relation labeled "80%
Strength" in Figure 5(b). In this calculation complete fracture occurred only at the origin.
The strain history from this calculation is plotted in Figure 6. The shape of the calculated
strain history at the strain gage location is noticeably flatter than the measured strain his-
tories. Although complete fracture occurred only at the origin, the plot of peak strains in
Figure 7 shows that inelastic tensile strain (associated with the peak computed fracture
volume per unit area) was distributed over several centimeters and exhibited a concentra-
tion at the 2.66-cm location.

Variation of the Unloading Modulus

Calculation C was performed to investigate the effects of the unloading modulus
assumed for the cells that undergo inelastic strain but do not fracture completely. In the
previous two calculations, unloading followed a straight line to the origin. In Calculation
C, unloading followed a straight line parallel to the elastic loading line. The relations used
in Calculation C are plotted in Figure 5(c). The strain histories calculated with elastic
unloading are shown in Figure 8. These should be compared with the strain histories from
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Figure 8. Strains calculated using strain-softening relations with elastic
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Calculation B (Figure 6). Primarily, the effect of elastic unloading is to produce a residual
tensile strain. This puts the calculated strain at 7.62 cm in slightly better agreement with
one of the measurements from the experiment. Another effect of elastic unloading is to
decrease the duration of the strain pulse. This effect is caused by the greater wave speed
associated with the steeper unloading slope.

_ Variation of the Cell Size

The cell size in these calculations has the role of a material parameter because it is
equivalent to an effective crack spacing. That is, each cell represents a potential failure
plane surrounded by elastic material. In the derivation of the strain-softening model, it was
pointed out that the ultimate strain consistent with the critical fracture volume per unit area
depends on the cell size in the calculation Cult =8/10. In addition, the unrecovered work
per unit area in a partially damaged cell depends on the cell size (Eq. 3).

Thus, before the simulations of the experiments were attempted, a study of cell size
dependence was conducted. Calculation set D was performed with cell sizes of 0.3 cm,
0.6 cm, and 1.0 cm. The same a(8) relation used in all the calculations was linear with
Tc= 5 MPa and 8c =6 .m. As suggested by the previous results of the parameter study,

S-the cell at the origin was given 80% of the strength in the rest of the rod. As before, the
rod was preloaded with 10 MPa compression, and the load was released with an exponen-
tial decay with a time constant of 15 pts. The calculated strains at 2 cm from the origin
are plotted in Figure 9. The strains from the 0.3-cm, and 0.6-cm cells are in good agree-
ment at both locations and appear to approximate the ideal plasticity solution. The strains
from the 1-cm cells are qualitatively different at both locations. This calculation also
predicts a very large local strain at the 4-cm location that is not predicted in the other
cases. The contrast indicates how the predicted response depends on the effective crack
spacing (cell size).

SIMULATIONS OF THE EXPERIMENTS

The expenments analyzed here are labeled Experiment I and Experiment 2. To simu-
late an experiment, the stress-strain relations and the cell size in the rod and at the loca-
tions of complete fracture were varied until the calculated strains matched the measured
strains. Both of the experiments were simulated very well using the same failure proper-

* ties. The measured elastic constants and the measured density were used in both cases.
Complete fracture was forced to occur at the observed locations of failure by degrading the
properties of the rod at those locations to 80% of the strength in the rest of the rod, as
described below.

*The simulations shown below were performed using 0.635-cm cells. This cell size
was found to be the one that worked best. When 0.333-cm cells were used, the roundness
of the peaks of the measured strain histories could not be matched. The calculated strain
histories were too flat. When 1-cm cells were used, additional complete fractures would
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occur in the rod. The 0.635-cm dimension is the diamter of the largest aggregate particles
and is roughly equal to the average axial spacing of the largest aggregate particles. This
cell size is considerably smaller than was found to work best in static analyses performed
by Bazant and Oh (1983). Perhaps this is because stress-wave loading excites more poten-
tial fracture sites before the unloading wave from a complete fracture quenches further
damage.

The strain-softening relations used in the simulation of Experiments 1 and 2 are
shown in Figure 10. (Variations were made to the 0(e) relation directly; the 0(5) relation
was then derived.) The strength (peak of the stress-strain curve) assigned to the rod was
4.4 MPa, 30% higher than the measured static splitting strength. In both cases, the
strength at the complete fracture location, (0.46 cm from the midpoint in Experiment I and
0.1 cm from the midpoint in Experiment 2) was degraded to 3.5 MIPa (80% of the strength
in the rest of the rod) to produce complete fracture only at the desired location. The critical
fracture volume per unit area was about 6 g~m. This is slightly larger than one might
expect; it corresponds, for example, to the volume of a 5-cm-diameter crack under a free-
field tension of about 3 MPa.

The strength levels were chosen to obtain a good prediction of the peak strains.
(Higher strength gives higher peak strains.) The intitial softening slope of the stress-strain
relation was chosen to match the rounded peaks in the strain histories. (A steeper slope
gives more pointed peaks, a less steep slope gives flatter peaks.) The critical fracture
volume per unit area was chosen so that the pulse duration of the computed strains would
match that of the measured strains, and to prevent multiple fractures. (A smaller critical
value results in a shorter duration pulse and multiple fractures.) The I MPa difference
between the two curves out to the ultimate strain was needed to prevent multiple fractures.
(A smaller difference would result in multiple fractures.) Although the curves in Figure 10
were chosen strictly to produce a good match to the measured strain histories, it is interest-

%"5 ing that the form of the curves is similar to the static measurements made by Willam, et al
(1984) on a lower strength concrete.

,Experiment I

The comparisons of calculated and measured strains at ±7.62 cm in Experiment 1 are
shown in Figure 11. (The calculated strains for Experiments I and 2 are the average of the
four cells spanning the strain-gage locations.) As the comparisons of strain histories show,
this set of stress-strain relations produces a very good match to the experimental results.
The calculated peak strains for this case are shown in Figure 12. At the locations of the
strain gages, the calculated inelastic strain (averaged over the length of the gage) was only
about 10 microstrain. Thus, the assumption that the measured peak strains were elastic
would give a reasonable approximation to the strength. However, inelastic strain occurred
nearly everywhere in the rod, so a strictly elastic analysis would not be appropriate. In
particular, damage was concentrated at two locations about 3 cm from the fracture. The
magnitudes of these peaks imply that less than half of the unrecovered work done was
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energy released at the location of complete fracture.

Experiment 2

To simulate Experiment 2, the same stress-strain relations were used, but the weak-
ened cell was centered at the midpoint of the rod. (In the experiment, the fracture location
was only 0.10 cm from the midpoint of the rod.) Two simulations were performed, one
with linear unloading to the origin, and one with elastic unloading, as shown in Figure 10.
The results are compared with the strains measured in the experiment in Figure 13. The
strain measured at +7.62 cm compares very well with the strain predicted using inelastic
unloading. On the other hand, the strain measured at -7.62 cm has a residual amplitude
similar to the prediction with elastic unloading. No attempt was made to improve the com-
parisons by changing the stress-strain relations.

Because the loading and fracture location in this experiment were essentially sym-
metric, the strains at ±7.62 cm would be expected to be the same. Because the measured
strains were different at the two locations, the effects of inhomogeneities not included in
the simulation must have caused this asymmetric response. The two simulations with
different unloading paths suggest that the asymmetry is at least partly associated with inho-

_ mogeneiues in unloading characteristics.

DISCUSSION

The first point of discussion is the fact that this trial-and-error exercise certainly does

not produce a unique interpretation of these experiments. Within the assumptions of the
model however, that the failure is associated with cracking and that the cracks are
separated by finite dimension, we found that there is a very narrow range of parameter
choices that produce agreement with the experimental observations. That is, seemingly
small deviations from the parameters given here result in much poorer agreement with the
experiments. The critical test of the parameter set lies in matching the strain histories
while also preventing multiple fractures.

Secondly, whereas the dynamic experiments produced a single complete fracture with

no visible secondary damage, the calculations predicted some inelastic strain to occur virtu-
0 ally throughout the specimen, with concentrations of inelastic strain within a few centime-

ters of the locations of complete fracture. Simulations in which this distributed damage did
not occur showed poor agreement with the measured strains. This result suggests that
extensive microcracking in the concrete may have occurred in the experiments in the region
of the specimen surrounding the complete fracture location. In fact, a posnest microscopic

* inspection made by Gran and Seaman (1986) of the interior of a specimen from a similar
experiment did show distributed microcracking that is qualitatively consistent with the
strain-softening predictions of maximum strain. These microcrack observations have not
yet been fully quantified, however, so a direct comparison is not shown here.
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Finally, we noticed that the calculated stress at the complete fracture location (not
shown) drops from 3.5 MPa to zero in about 10 ts. This observation raises the question
of how the strain history at the measurement locations can have a decay time of about 50
pts. The answer is that the inelastic strain between the fracture location and the strain gage
locations drastically alters the tensile stress wave as it propagates. In fact, for matching the
strain measurements, the description of the material behavior in this region has a far greater
effect than does that at the location of complete fracture. (A calculation in which the cell
at the fracture location is given the same strength as before but with only half the ultimate
strain produces a much quicker decay of stress at the fracture location but only a slightly

-quicker decay in strain at the strain gage locations.) That is, the calculations are not as
sensitive to the details of the softening properties at the location of complete fracture,
except that fracture must occur there. Thus, the properties assumed for the rest of the rod,
rather than those assumed for the fracture location, are a better description of the material
in general.

SUMMARY AND CONCLUSIONS

A one-dimensional strain-softening model was used in wave-propagation calculations
to interpret results of dynamic tension experiments on concrete rods. The model is based
on the assumption that the stress-strain relation is not a property of a material point (as in
continuum theory), but is an average property of a finite volume of material containing a
developing crack or failure plane. The stress-strain relation thus has associated with it a
finite dimension, namely an effective crack separation distance.

Using the idealized one-dimensional strain-softening stress-strain relation, two
dynamic unconfined tension experiments were simulated several times with trial sets of the
material parameters until good agreement with the measured strains was obtained in both
cases. The two experiments were simulated with the same set of stress-strain relations,
which is consistent with the fact that the experimental results were very similar both qualti-
tatively and quantitatively. In addition to providing an estimate of the dynamic tensile pro-
perties of the concrete, these calculations suggest that tensile damage in the concrete was
distributed over several centimeters. Finally, the calculations suggest that the strain history
measured a few centimeters from the location of complete fracture is primarily a function
of inelastic wave propagation from this location to the strain gage (through a region of dis-
tributed tensile damage), and is less dependent on the behavior of the material at the loca-
tion of complete fracture.

The stress-strain relations used to obtain the best match with the data certainly cannot
be considered unique, but there is not very much latitude in the choice of the material
parameters that produce a good match with the measurements. Based on these analyses,
the unconfined tensile strength of the concrete at a strain rate of 10/s to 20/s is about 4.4
MPa, nearly 30% higher than the static splitting tensile strength of 3.4 MPa. The stress
versus fracture volume relation is not linear, the critical fracture volume per unit area is
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about 6 gm, and the effective crack spacing is about 0.635 cm. The critical fracture
volume is larger and the effective crack spacing smaller than would be derived from static
experiments and analyses. These parameters are apparently dependent on the dynamics of
fracture.
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APPENDIX II. - NOTATION

The following symbols are used in this paper:
E = elastic modulus

"Y = stress
00 = tensile strength

E = strain
F-0 = strain at peak stress
E.-t = ultimate strain
10 = initial cell dimension

- = fracture volume per unit area
8C = critical fracture volume per unit area
Gc = fracture energy per unit area

' = work done to partially fiacture a cell
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APPENDIX C

A SUBROUTINE FOR DETERMINING STRESS INTENSITY VALUES,

CRACK OPENINGS, AND EFFECTIVE MODULI FOR

MULTIPLE CRACKS IN AN ELASTIC MATERIAL

1. INTRODUCTION

Kachanov1 has constructed an approximate analysis for computing stress inten-

sity values for arrays of cracks of arbitrary locations, lengths, and orientations in

an elastic solid. This report outlines an implementation of Kachanov's procedure

into a computer program for routine evaluation of these stress fields.

The method is based on classical solutions for the stress states around a two-

dimensional fiat crack in an infinite elastic body under external tractions. The

procedure provides for a simultaneous solution for the stress intensity values (K

and K 11 ) at each end of each crack in the array. With these K values, the crack

opening shape is determined. From the crack shape, the average crack opening
strain in the body can be found.

This Appendix outlines the basic analytical procedure developed by Kachanov

and then describes the techniques used in our program. Some comparisons with

exact solutions are given.

2. OUTLINE OF KACIIANOV'S METHOD

Kachanov considers an array of two-dimensioei,. cracks embedded in -in elastic

material under a remote loading (U'). We assume that the cracks are of arbitrary

. length, location, and orientation. The length of the r crack is given by Lr and

the orientation by the unit normal ii,.

To quantify these cracks, Kachanov forms a crack density tensor A with the

following definition:

- c-I
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A ZL'ifl 1%rSr= 1

and represents the normals in the i, j coordinate system thus:

i ir = n(' i'+ n!j )-? (2)

or

471
* fl, = cos Or + sin Orj -sin 0,+cos 4j (3)

where Or is the angle from the i direction to the normal to the crack plane and

0,i is the angle from i to the crack plane. Note that the factor ii,.ii7 on the right

in Equation (1) is a dyad, not a vector or dot product. Then the components of

the crack density tensor are

R
A= Lzn(')n,(i) (4)r r r

i=l

From its definition, we can see that A is a symmetric second order tensor (as
'-'U a sum of such). This tensor describes the lengths and orientations of the cracks

but not their locations in the material. The principal axes of A are the axes of
orthotropy. In more detail, A is given by the following equation:

% --- ,.A~ = L lsin2 €&i' "+ cos2 ¢,j3? - sin €, cos + 3i' )1+(5)

or the matrix of components

04
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A = Z S~~L'sink - rL'sin¢cos¢r (6)

- .L2 sin Or COS Or Er L 2 COS 2 €

The stress acting along each crack is a superposition of the external stress field

on the stress field caused by the opening of each of the other cracks. To proceed,

Kachanov considers just two cracks and their interactions. He evaluates first the

interaction stresses an( ) and a'( ): the stresses at position along the sth crack

generated by uniform normal and shear tractions of unit intensity along the rth

crack. To obtain the actual stresses along the sth crack, we multiply by the average

of the normal or shear stresses on the rth crack: < Pr > and< r, >. This use of

the average stresses on the cracks is the essential ingredient of Kachanov's method

that simplifies the solution enough to make it practical.

With the foregoing definitions, we can now write the basic equation for the

normal and shear stress at any point along the s" crack as a function of the
In external normal and shear loading (P.0 and r') and the interaction stresses from

the other cracks.

P" P7 + iisZa(. 3a( r , (7)

"7 )=r a[Zor( ) <Pr>+a,,() <,>] - [r 3rPP,( )- ii (8)
r~A

Here P7 = iia°°i° and r73 = iiqoa -P3il, are the normal and shear tractions

induced along the sth crack length by the remote loading in the absence of the0
cracks. The ii, factors are normals to the plane of the sth crack; hence, their

presence in the equations provides for a standard angular transformation of the

applied stresses onto the sth crack plane. The quantities ao and u, are the stresses

C
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generated along the sth crack trace by uniform tractions (normal and shearing) of

unit intensity acting on the r h crack. These stresses are listed in Section 5 below

for convenience. The < P, > and <,r, > quantities are obtained by averaging the

normal and shear stresses acting along the rth crack.

The first step toward solution is to average the stresses in Equations (7) and

(8) along the crack lengths.

":v, < ~P, >= Po + E (Aar, < P, > +Aar< ) 9

<ra>= rr + E(A n < Pr > +Arr < rr >) (10)

The A quantities in these equations combine the averaging process over the

length of the sth crack and the tensor transformation for orientation.

nl ii, <p > ak >1

oA = no < ar > -AsiZ" (12)

I where k refers to either n or r.

The second step in the solution is to compute the A quantities in Equations

(9) and (10). The simultaneous equations given by Equations (9) and (10) can be

* written in matrix form as follows:

TP =F (13)
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where T is a matrix based on the A values, P is a vector containing the averaged

quantities < P, > and < r, >, and F is a vector of the external tractions P,' and

Next, the matrix T is inverted to solve for P. With the average values of the

stresses on each crack known, we can return to Equations (7) and (8) to compute

the stresses P,(e) and r,( ) along the crack lengths.

Stress Intensity Factors

With the stresses known along the crack lengths, the stress intensities are

computed from the following formulas:

1 L 1 /2
K(±L) = J-LL P()d (14)

and

1 L L 1/2
K1 1 (± L)Il()

K /--L f-L [17"7J

where L is half the crack length.

Crack Opening Displacement

.The crack opening (normal displacement) is computed using the following

shape function for a quadratically distorted ellipse, obtained by multiplying the

expression for the coordinate of an ellipse by a quadratic. By using the quadratic,

Kachanov is allowing the crack shape to distort from the ellipse that would be

obtained for an isolated crack. The normal crack opening (b,) is

4L 1+

b. = s + + 1 (16)

A similar formula is written for b,, the shearing displacement. Kachanov gives
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~~~, , r. , r-,. - rw..-rW w. .t.n1, n - = k 1 T -r , ¢ :.w , r-r ,w. s . . . . . - - | I .- . - - - = . -

expressions for Sn, an, and /3n in terms of K and Kl, at both ends of the crack.

'2 , KI(L) + KI(-L)

anKi(L) - KI (- L) (18)

4 < P. > Vx/ - [K1 (L) + K 1 (-L)]

= KI(L) + K 1(-L) - 2 < Pa > v'i' (

4 < P > /-L- [KI(L) + gx(-L)(

* For the shearing displacement b, identical expressions are used for S,, a,, and

X,, except that K, is replaced by K 1 and < Pa > is replaced by < r, >. In all

these foregoing equations for the crack opening, < P, > and <r, > are the values

from Equations (9) and (10); that is, the average normal and shearing stresses

on the crack face. Hence, with the K values known, the normal and shearing

displacements of the crack surfaces can be found.

The average opening displacement of the cracks is given by integrating the bn

value over the area of the crack face:

< > rLS, (1+ ,./4) (20)
E

and the crack volume (Bn) is

47rL'Sn
B n E (1 + On/4) (21)

Similar expressions can be formed for the average and total shearing distortions

< b, > and B,.

c-6
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Effective Elastic Moduli

The derivation of the effective moduli begins with the determination of the

appropriate coordinate axes for the modulus tensor. Kachanov notes that if crack

interactions are neglected, the effective properties are always orthotropic (that

is, they have rectangular symmetry) for any crack configurations. Thus, in the

approximation of noninteracting cracks, the axes of orthotropy provide a natural

coordinate system for effective moduli when interactions are taken into account.

Therefore, Kachanov outlines the following steps for determining the effective

moduli:

Step 1: Find the axes of orthotropy (i, F2) assuming the cracks do not interact.

* Step 2: Find the effective properties for interacting cracks in the coordinate

system il, e2.

In the first of these steps the axes of orthotropy are determined using the A matrix

given in Equation (6). The angle a measured counterclockwise from the i direction

in the i, j external coordinate system is computed as follows from the components

of the A matrix:

tan 2a = -2 A 12  (22)
All - A 22

We begin step 2 by looking for matrix Ciykz of effective compliances:

,,'< Eij >= CiYkloak' (23)

where <> indicates a volume average and the stresses are the remotely applied

ones. Hereafter, 1, j, k, and 1 refer to the orthotropic axes il and F2.

The general formula for the derivation of the elastic coefficient matrix CykL is

C-7
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U1

<E >= C: Coo + (iir,, + E,.,()L, (24)

where S is the area of the elementary cell containing the cracks, C' is the

elastic compliance, and ao° is the externally applied stress. The ii vectors are

normal unit vectors. b is the average displacement discontinuity across the rth

crack. Referring to Equation (20), E, has the definition

Er =< bK > ?k+ < b, > 7n (25)

* and n,, and ffi, are unit vectors in the direction normal and along the rth crack.

For br Kachanov makes the following approximation to Equation (20):

9 " 4r r (26)
E.

where F. is the average traction provided by Kachanov's method and

Sn P
S= (1+ L) (27)

r 4

and -y is assumed to be 1. Here Kachanov is neglecting the fact that crack

opening depends on the orientation of the applied stress. Now Equation (24) can

be written

<- >= C': -' + 2Eo--- (iirt, + tri 7r)Lr (28)

To construct the iit quantities in the preceding equation, we let

C-8

-2.



t, t, 1 F' + 4,2 2  (29)

Now we rewrite Equation (2) as

n + (30)

Then we combine this definition of iir with that for Fr and form the products

in Equation (28).

*r = Fi(() + n()ij4 + r2 (n(') F i~ + n 2 - F (31)

i/A With reversed symbols, the equation is

= !(n(1)W. + n(2)F3) + 1"2(n1)- n ( 2) (32)

The only difference between Equations (31) and (32) is the reversal of the vector

pairs *e in the central two terms. With Equations (31) and (32) in Equation (28),

we can see the form the compliance equation must take. The stress quantities ak

in Equation (23) are applied one at a time, so the F,. quantities always represent

just one applied stress component. The vectors ei and 4j then correspond to the

directions of the strain Zip

Let us now examine the i)i expressions in preparation for programming them

into the code. First examine the itr terms in Equation (30).

,- #4. = cos(Or - a)i, + sin(O, - a)F2 (33)
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The t , and tk2 terms are derived in a three-step procedure:

1. Apply a unit external stress in the FI-F2 orthotropic plane, and transform

this stress to the fixed 1-j plane to obtain the components a.., aoy, and a ..

2. Determine the normal and shear stresses on each plane from this external

loading.

3. From the P,' and -rr arrays and the T matrix, derive the modified normal

and shear stresses (< P, > and < -, >) on each crack, accounting for the

presence of the other cracks.

Now the argument in the sum in Equation (28) can be written out. The expression
is

irtr -±- trir = 2tl cOS(Or - a)i )' + (trl sin(O, - a)+ 4t,2 cos(O, - a))i2,

+ (t1Sin(Or - a) 4 t 2 cos(0, -a )) iliF2 + 2t2 sin(0, - a) F2 e2 (34)

Hence, with each loading a', we can derive 4 c terms (E1 , E2, and e1 -

621). The applied external stresses are al, '22, and U12 (= a72). Note that in our

transformations we recognize that '712 and '721 are always applied together.

Kachanov begins the computation of the compliances Cijkl with the application

of a 'trial' stress (a'). He states that the < El > response to this stress provides

the effective Young's modulus (El) in the iF directions, or C1111.

a_7o = a' e, (35)

40
and we can take a, as unity. Then

<El>= + 2los 2L~t,, 2 t. in' Cl,,,
E1 > E,, 2ES r 2trif$~ -ECl (36)
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Here tl is the component of F,. along F, calculated under conditions of our

loading a'. Thus

E. 1 + < t' > (37)

Similar computations will yield C2222.

The computation for C2211 proceeds as follows. Let the applied stress be the

same as in Equation (35) and take a' as unity. Then

<F02 >= -E"O + 2E- 2L'tT2 C2211  1 (38)
Eo 2EoS , rE

where t2 is the e2 component of Z. calculated under conditions of our loading
all

Next we compute C1212, the < e12 > response to or'.

1 / 1
< C1 2 >= + 2E L, (,n')t 2 + trlflin) _= (39)< 1 =2Go 2EoS rr( r 2G12

The tl and t,2 values are components of F4 as calculated under loading o' =

1.

The constants written above are the only non-zero ones in orthotropic material.

The rest of the constants developed below characterize deviation from orthotropy.

For these constants, let us start with C1211, the < C12 > response to a = 1.

< E1 2 >= 2ES L 2 (n(')t 2 + tri2) C1 211  (40)

c-11



The t7 components are calculated under thc loading of a = 1. We can

compute C1222 similarly.

Moduli for Noninteracting Cracks.

These moduli are for comparison, to estimate the effect of crack interactions

on the overall moduli. They are given by the same formulas as the corresponding

moduli for the interacting cracks, the only difference being that the tractions on

cracks (F,,) are taken as directly induced by the remote loading ej"'; that is,

- =(41)

The factor on the right is a dot product between the vector fi, and the stress

tensor. Thus, in the formula for C1111, for example,

fil. (a,-, (a Fj) = nr(42)

and therefore,

t,1 = n1) and tT2 =0 (43)

and hence the normalized modulus E 1/Eo is

Eo 1 + I Z7 L (n'))2 (44)

and similarly for C2222.

Other compliances, such as C2211 , are unaffected because tr2 is zero under a'

loading. That is,

~C-12
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'o2211 = (45)

For C 12 12 the expression is

t,. = F + F2 1)

- nl)e 2 + n)el (46)

t 2 e2 + t416

Then C 121 2 is computed from

C12 - 1 + r* [(n(')) 2 + (n(2)) 2 ] L 2

- + r (47)
=7 L 2_ , L

The foregoing procedure is implemented in the computer program to be de-

scribed next.

3. DESCRIPTION OF THE KCRACK PROGRAM

The calculations in the program begin with the insertion of input quantities

to describe the problem. The material constants E (Young's modulus) and v

(Poisson's ratio) are inserted first. Then for each crack the crack length (L), crack

center (Xo, Yo), and angle (0) of the normal to the crack are inserted. The external

field is described by Szz, Syy, and Szy.

The normal and shear stresses on the cracks caused by the external loadings

are determined by a standard tensor rotation in the subroutine CRFORC:
0

p S cos' 0, + Sy. sin2 O+ 2S,, sin 0, cos 0, (48)

, C-13
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I-

= S- s) sinO, cosO + S, [cos' o, - sin' o,] (49)

These quantities - P,' and ri - are contained in the FORCE array. A

similar tensor transformation provides for evaluating the A quantities:

S =-[cos'(O - Or) (d (50)

*+2sin(0 3 - 0,) cos(0 5 - Or)] or' ,(C)d + sin 2 (Oa - 0)1 a'rn ,( ) d

The ar ,, quantity is the stress in the X direction (of the r'h crack) from the

standard stress fields for normal stress on the rth crack acting at the location

- on the sth crack. In constructing this stress, we use the standard fields given by
Kachanov and listed in Section 5, the distance between the center of the rth crack

and the point along the sth crack, and the relative orientations (0r and 0,) of

tne two cracks. The same expression is used for A" by replacing the a n quantities

with a'.

P, The corresponding expression for A" is

ar 2.- Isin(O,-Or) Cs(O-Or) (f8 a'="( d + f. Yyur( )d ) (51)

(j) a Or)d j s~d ) (1

( cos(Oo - or) - si(oo -o)) (L. Y I

A similar expression is used for A", with a ' replaced by a'.

The integrals in the foregoing expressions are evaluated by Simpson's rule in

the program in the CRSTRS subroutine. The integration was tested using 10, 20,

C-14
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40, and 100 intervals for the case of two parallel end-to-end cracks with a spacing

of 0.01 L, where L is half the crack length. For 40 intervals or more, the results

were accurate to four significant figures.

With the A values known, we construct the T matrix with the following defi-

nitions for the components:

Tkm 1 fork = m (52)

Ofork=m+ lorm-1

-- A" for r = k/2 - 1/2 for k odd, and s = m/2 - 1/2 for m odd

-- An for r = k/2 - 1/2 for k odd, and s = m/2 for m even

-- A" for r = k/2 for k even, and s = m/2 -1/2 form odd

-A for r = k/2 for k even, and s = m/2 for m even

This T matrix (called AMAT in the program) is inverted in CRSTRS to obtain

7' the P force vector. The P vector contains the average stress (normal and shear)

on each crack (Equations (9) and (10)).

With the P force vector known, we can return to Equations (7) and (8) to

compute the local stresses and then evaluate the stress intensities from Equations

(14) and (15). These local stresses, Pr(e) and r,(e), are computed in the subroutine

CRK1 with the help of TRACTN. Because the integrals in Equations (14) and

(15) are singular at both ends of their range of integration, we used Chebyshev-

Gauss quadrature to evaluate them. Equation (14) was rewritten as follows for

the numerical integration:

K1 (L) = + P(I)dL (53)
N%': L 1_. (1 + e/L)P(e)d/L

* Then the numerical expression is

" C-15
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K (L) - :(1 + x,)P(x,) (54)
i- 1

where x, = cos[(2i - 1)7r/(2m)], and m is the number of intervals used in the
0 integration. The integration for K was tried with various values of m. Results
.1

that were accurate to four figures were obtained with m = 40.

4. EXACT SOLUTIONS FOR STRESS INTENSITY FACTORS

To evaluate the accuracy of the preceding method, it is useful to have exact

solutions for some special cases. Such solutions are available for the case of two

* colinear cracks. In addition, Kachanov wns able to obtain an analytical solution

based on his approximate method. These two types of analytical solutions are

presented, and some representative values of K, are given.

In all cases, the analysis is for a pair of cracks extending along the x axis from

-1 to -k and from k to 1. The elastic body is loaded by a uniform tension in the

Y direction. The resulting K, and K 1 values are given in Table C-I. The K values

listed in the columns labeled "Procedure" were obtained by the numerical method

discussed in this report; those in the column labeled "Approx." by an analytical

solution to the method reported here, and given by Kachanov in his paper; and

those in the column labeled "Exact" by the exact analytical solution. The results

in the table show that the numerical procedure gives an acceptable approximation

to the exact results throughout the range of interest. Also, the numerical method

is able to reproduce the values of the analytical solution to this procedure within

0.1% for crack separations down to 1% of the crack length. The surprising result

of Kachanov's procedure is that it is so accurate for very close spacings of the

cracks.

Exact Solution of the Approximation

For two cracks along a line, an analytical solution was obtained by Kachanov

C-16
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TABLE C-I

COMPARISON OF STRESS INTENSITY VALUES

k K1 (k) Errors, %

Procedure Approx. Exact Proc. Approx.

0.200 1.112018 1.112018 1.112470 0.040 0.040

0.100 1.250944 1.250944 1.255122 0.333 0.333

0.070 1.346863 1.346862 1.356894 0.739 0.739

0.050 1.452423 1.452421 1.472882 1.389 1.389

0.020 1.808529 1.808426 1.904569 5.04 5.05

0.010 2.134548 2.133550 2.371571 9.99 10.04

0.007 2 317831 2.315134 2.671641 13.24 13.34

0.005 2.499528 2.493311 2.999207 16.67 16.87

0.002 3.041578 3.002006 4.164502 26.96 27.91

0.001 3.517141 3.399714 5.394657 34.80 36.98

k K 1 (1) Errors, %

Procedure Approx. Exact Proc. Approx.

0.200 1.051580 1.051580 1.051682 0.00965 0.00963

0.100 1.085775 1.085775 1.086335 0.0516 0.0516

0.070 1.102807 1.102807 1.103874 0.0963 0.0967

0.050 1.118012 1.118011 1.119791 0.1588 0.1590

0.020 1.153792 1.153772 1.158939 0.444 0.446

0.010 1.174985 1.174831 1.184110 0.778 0.784

0.007 1.184115 1.183738 1.195629 0.963 0.995

0.005 1.191838 1.191042 1.205669 1.147 1.213

0.002 1.210363 1.206282 1.229385 1.547 1.879

0.001 1.224751 1.214200 1.244326 1.573 2.421

Note: The "Procedure" values were generated using 40 intervals.
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for the KI values. The cracks extend from -1 to -k and from k to 1. So the K

values have the following expressions:

1 7r
KI(1)/Ko = 1 + (1 - A)r(1 - k) 2E(n) - k(k + 1)K(m) - 2 - k) (55)

K(k)I K = 1 + 1 2E(m) + (k + 1)K(m) - (1 - k) (56)(1- A)(- k)[1

* where KIo = a 7r(1 - k)/2 is the stress intensity factor for an isolated crack,

A = V2(1 + k)/(1 + V/7) - 1 is the transmission factor,

m = V/1 -k 2 is the argument of the elliptic integrals,

and K and E are complete elliptic integrals of the first and second kind.

These expressions for K were evaluated for a range of k values and the results
are listed in Table C-I.

V) Analytical Solution

Page 46 of Sneddon and Lowengrub4 gives formulas for KI and K 1 values for

a pair of adjacent horizontal cracks under either normal (a) or shear (,r) stress

applied remotely. The cracks extend from x = -b to -k and from k to b. The

* expressions for the K values at the near ends are

K -(r/k)/bE(k)/K(k) - k
K..,J w.IL. = (b2 - k2) (57)

(b2~k - -r/ (58)
A~II(b2 - k2)1

/
2

* and the K values at the remote ends are
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KI(b) = aCb1/21 - E(k)/K(k) (59)

K11 (b) = r(7rb)1/2 1 - E(k)/K(k) (60)
k

In these expressions, K(m) and E(m) are complete elliptic intcgrals of the first

and second kind, and m is the modulus:

m= 1-k 2/b2  (61)

0 For comparisons with the other computations, it is useful to display these stress

intensity factors as ratios of the present values divided by the K values for isolated

cracks. These isolated K values are

K 10 = abr(b- k)/2 (62)

and a similar one for Kilo.

These expressions for KI were evaluated at several k values and the results are
listed in Table C-I.

5. STANDARD STRESS FIELDS

Kachanov3 has provided the standard stress fields (in an elastic body) resulting

from uniform tractions applied along the face of a crack. For these equations, the
crack lies along the X-axis, with its center at the origin of coordinates. The uniform

tractions are p and r. The stresses at any point in the X-Y plane are:

a = 2p( - 8Y 214 + 8Y 4 16)

= P(2 + 4Y 2h - 8Y 4 16) (63)
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=2p(-Y1 3 + XYI4 + 4Y 315 -4 4Xy 3 16)

Similarly, for the shearing stress:

a,.= 2i-(3YI 3 - 3XYI 4 - 4y 315 + 4XY 3 16)

Or= 2,r(-YI3 + XYI4 + 4Y 315 - 4Xy 3 4) (64)

or,= T(1 2 - 8Y 214 + 8 Y 416)

The I factors in these equations are defined in terms of the locations of the

point of interest and the crack length as follows:

I, 4L3 -12va

6 V~'(V~+ ~+ /j

12 =4L
2

14 = 2V 1/aj +6 V$'Y (65)

= L3 ~~~v /-C + N/_f) 2 (f*- /) (yI a 2

16 = (a3/ +rC +32) + (_3/ +
2 (a-) 3 /26/

The Greek letters are defined for these equations as follows:

ai = (X -L) 2 + y 2

= 2(X 2 +y 2 - L 2 )

-~= (X +L) 2 + y 2  (66)

6 = /3+ 2 Vi-

These are the standard stress fields used earlier in this appendix.
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6. LISTING OF THE KCRACK COMPUTER PROGRAM

The KCRACK program consists of a main program plus several subroutines.

The following listing starts with KCRACK. Next is the COMMON, a listing of the

shared variables for use in the main program and all the subroutines except MINV,

SIMQ, and TRACTN. Following the COMMON are the subroutines: CRALF,

CRCOMP, CRFORC, CRK1, CRK2, CRNINT, CRSHAP, CRSTIF, CRSTRS,

MINV, SIMQ, and TRACTN. The purpose for each subroutine is described briefly

in the subroutine listing.
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PROGRAM KCRACK
C VERSION OF JANUARY 1988
C CHANGED TO HAVE MANY SUBROUTINES.
C PROGRAM TO COMPUTE ELASTIC CRACK INTERACTION, WRITTEN BY
C LYNN SEAMAN, SRI, JULY 1987 BASED ON DERIVATIONS
C FROM MARK KACHANOV, TUFTS.
C X AND Y ARE COORDINATES OF-CENTROID OF CRACK,
C THCR IS THE CCW ANGLE TO THE CRACK NORMAL IN DEGREES.
C STRESSES ARE POSITIVE IN TENSION.
C

INCLUDE '$DISK3: [SEAMAN.CRACK]KCKCOM.FOR'
C

CHARACTER*10 A1,A2,A3,A4,TITLE(8)
DIMENSION JBUG(10)

C 1- KCRACK 3- CROOMP 5- CRK1 7- CRNINT 9- CRSTIF
C 2- CRALF 4- CRFORC 6- CRK2 8- CRSHAP 10- CRSTRS
C VALUES OF JBUG(5) AND JBUG(10) OVER 2 GIVE PRINTS FROM -TPACTN-
C------------------------------------------------------------------------
C INPUT
C------------------------------------------------------------------------
C INPUT ELASTIC PROPERTIES
C EMOD IS YOUNG'S MODULUS, POISSON IS POISSON'S RATIO

*C ANINT IS THE NUMBER OF INTEGRATION INTERVALS USED.
PI = 3.14159265358979323846
WRITE (6,1000)

1000 FORMAT (30X,'S R I K C R A C K'1' CRACK STRESS INTENSITY '

1 'FACTORS, CRACK SHAPES, AND EFFECTIVE STIFFNESSES'/)
READ (5,1006) TITLE
WRITE (6,1006) TITLE

1006 FORMAT (8A10)
READ (5,1001) A1,EMOD,A2,POISSON,A3,ANINT,A4,JBUG
WRITE (6,1002) A1,EMOD,A2,POISSON,A3,ANINT,A4,JBUG
IBUG - JBUG(1)
NINTRV - 2*INT(0.5*ANINT + 0.5)
IF (NINTRV .GT. 100) NINTRV = 100
IF (NINTRV .LT. 2) NINTRV = 2
WRITE (6,1010) NINTRV

1010 FORMAT C'**KCRACK 10, POSSIBLE RESETTING: NINTRV = ,15)
1001 FORMAT (3(Al0,E1O.3),Alt0,10I1)
1002 FORMAT (3A1O,1PE1O.3),A1O,10I1)

C INPUT EXTERNAL STRESS FIELD
READ (5,1003) A1,NTYPE,A2,SXX,A3,SYY,A4,SXY

* WRITE (6,1004) A1,NTYPE,A2,SXX,A3,SYY,A4,SXY
... ~1003 FORMAT (A10,I10,3(A1O,E1O.3))

1004 FORMAT (A1O,I10,3(A1O,1PE1O.3))
C INPUT MICROCRACK LENGTHS, POSITIONS, AND ORIENTATIONS
C NCRACK IS THE NUMBER OF CRACKS

READ (5,1003) A1,NCRACK,A2,SAREA
WRITE (6,1003) A1,NCRACK,A2,SAREA
DO 100 NC=1,NCRACK

C XCR AND YCR ARE CENTROID OR CRACK, THCR IS ANGLE TO NORMAL
4 READ (5,1005) A1,ELCRAK(NC),A2,XCR(NC),A3,YCR(NC),A4,THCR(NC)

WRITE (6,1007) A1,ELCRAK(NC),A2,XCR(NC),A3,YCR(NC),A4,THCR(NC)
105FOMT64AOE1.)

M 1007 FORMAT (4(A1O,1EO.3))

C-----------------------------------------------------------------------
C INITIALIZATION OF XCRACK AND THETA
C-----------------------------------------------------------------------

THETA(NC) - PI/180.*THCR(NC)

C- 22

01 F r 11 ljr 1, , ljj " , 1 1 ,11 119 1 I



IIT(C = nwTEANC))ww

CSTH(NC) = CSN(THETA(NC))
COSTHNC = C(THESTANC)
ELCSN = ELCRAK(NC)*CSTH(NC)
ECOSKNCl = ELRA(CR(*CSTH(NC
XCRACK(NC,1) = XCR(NC)-ELN
XCRACK(NC,2) = XCR(NC)+ LI
XCRACK(NC,3) = XCR(NC) + ELCSN
YCRACK(NC,L) = YCR(NC)+ELS
YCRACK(NC,3) = YCR(NC)- LO

IF (IBUG .GT. 0) WRITE (6,1098) (XCRACK(NC,I),I=1,3),XCR(NC),
1 (YCRACK(NC,I),I=1,3),YCR(NC)

1098 FORMAT (' KCRACK 98 X=',lP3E15.8,' XCR=',E15.8/10X,'Y=',3E15.8,
1 ' YCR=',E15.8)

100 CONTINUE
C "' COMPUTE THE STRESSES DUE TO THE EXTERNAL LOADING

CALL CRFORC(JBUG(4))
C----------------------------------------------------------------------
C PART 1: COMPUTATION OF THE AVERAGE STRESSES ON EACH MICROCRACK
C----------------------------------------------------------------------

CALL CRSTRS(JBUG(10))
C----------------------------------------------------------------------
C PART 2: DETERMINATION OF THE -K- STRESS INTENSITY FACTORS

* ~~ C---------------------------------------------------------------------
C ** DETERMINE THE TRACTIONS ON THE CRACK FACES

CALL CRK1 (JBUG(5))
C ** COMPUTE THE K VALUES

DO 700 NC = 1,NCRACK
CALL CRK2 (NC, JBUG(6))

C----------------------------------------------------------------------
C PART 3: COMPUTATION OF THE CRACK SHAPES
C----------------------------------------------------------------------

CALL CRSHAP (NC,JBUG(8))
700 CONTINUE

C---------------------------------------------------------------------------
C PART 4: COMPUTATION OF THE COMPLIANCE AND STIFFNESS MATRICES
C---------------------------------------------------------------------------
C ALPHA MATRIX FOR THE ORTHOTROPIC DIRECTIONS FOR NON-INTERACTING
C CRACKS.

CALL CRALF (JBUG(2),SINALF,COSALF)
C ** CONSTRUCT SUM (NT + TN)L^'2 FOR Sil, S22, OR S12

CALL CRSTIF (JBUG(9) ,SINALF,COSALF)
C ** CONSTRUCT THE COMPLIANCE MATRIX

* CALL CRCOMP(JBUG(3))
C ** CONSTRUCT THE STIFFNESS MATRIX FOR INTERACTING CRACKS

CALL MINV(AMAT,6,DETERM,LLL,MMM)
* WRITE (6,1908) (AMAT(),I=1,36)

1908 FORMAT (f STIFFNESS MATRIX = ',1P6E12.5,' FROM KCRACK 908'
1 /20X,6E12.5/20X,6E12.5/20X,6El2.5/20X,6E12.5/20X,6E12.5)

C---------------------------------------------------------------------------
*C PART 5: COMPUTE COMPLIANCE MATRIX FOR NON-INTERACTING CRACKS

C----------------------------------------------------------------------
CALL CRNINT (JBUG(7) ,SINALF,COSALF)

V C ** CONSTRUCT THE STIFFNESS MATRIX FOR. NON-INTERACTING CRACKS
CALL MINV(AMAT,6,DETERMLLL,MMM)
WRITE (6,1928) (AMAT(I),I=1,36)

*1928 FORMAT (' STIFFNESS MATRIX = ',1P6E12.5,' FROM KCRACK 928'
1 /20X,6E12.5/20X,6E12.5/20X,6E12.5/20X,6El2.5/20X,6E12.5)
STOP f NORMAL END OF KCRACK'

END
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IMPLICIT REAL*8 (A-H,O-Z)
C COMMONS FOR THE -KCRACK- CODE

COMMON KROW,NCRACK,NINTRV, SXX, SYY, SXY,EMOD,POISSON, SAREA
COMMON AK1(1O,2),AK2(1O,2)
COMMON ELCRAK(1O),XCR(1O),YCR(1O),XCRACK(1Q,3),YCRACK(1,3)
COMMON COSTH(1O),SINTH(1O),THCR(10),THETA(10)
COMMON SP(1O,1O1),ST(1O,1O1),SUMN(101),SUMT(1O1),XID(lO1)
COMMON SNN(1,1,1O1),STN(1O,1O,1O1),SNT(1O,1O,1O1),
1. STT(1O,1O,itO1)

COMMON ALPHA(2,2)
COMMON AM4AT(400),BMAT(400),FORCE(20),PL(20),TL(20,20)
COMMON SUM(3,3),COMPL(6,6),COMPLQ(6,6)
COMMON SHAPES(1O,2),SHAPEA(1O,2),SHAPEB(1O,2)
COMMON LLL(6),MMM(6),PI
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SUBROUTINE CRALF (IBUG,SINALF,COSALF)
CCOMPUTATION OF THE ALPHA MATRIX TO DETERMINE THE ORTHOTROPIC

C DIRECTIONS FOR NON-INTERACTING CRACKS.
c

INCLUDE 'SDISK3: [SEAMAN.CRACK]KCKCOM.FOR'
c.

CRSUM = 0.
DO 750 NC=1,NCRACK
EL2 = ELCRAK(NC)**2
CRSUM = CRSUM+EL2

ALPHA(l,l) = ALPHA(l,1) + EL2*SINTH(NC)**2
ALPHA(1,2) = ALPHA(1,2) + EL2*SINTH(NC)*COSTH(NC)
ALPHA(2,2) = ALPHA(2,2) + EL2*COSTH(NC)**2

750 CONTINUE
ALPHA (2, 1) = ALPHA (1, 2)
IF (IBUG .GT. 0) WRITE (6,1754) ALPHA(1,1),ALPHA(1,2),ALPHA(2,1),

1 ALPHA(2,2)
1754 FORMAT (/' ALF-754 ALPHA =',1P2E12.b/12X,2E12.5)

DALPHA = ALPHA(l,l)-ALPHA(2,2)

IF (ABSIDALPHA) .LT. CRSUM*1.E-30) DALPHA = CRSUM*1.E-30
TAN2ALF = 2.*ALPHA(1,2)/DALPHA
ALF = 0.5*ATAN(TAN2ALF)
ALFDEG = 0.5*ATAN(TAN2ALF)*180/PI

C COS2ALF = 0.5*(ALPHA(1,l)-ALPHA(2,2))/SQRT(ALPHA(1,2)**2+

*C 1 0.25*(ALPHA(2,2)-ALPHA(1,l))**2)

SINALF = SIN(ALF)
COSALF = COS(ALF)

C -ALF- IS THE ANGLE OF THE ORTHOTROPIC AXES FROM X,Y, (+ CCW)
IF (IBUG .GT. 0) WRITE (6,1759) ALFDEG,TAN2ALF,SINALF,COSALF

1759 FORMAT (/' ALF-759 ALF(DEG)=',1PE12.5,' TAN2ALF=',El2.5,
1 ' SINALF,COSALF=',2El2.5)

END
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SUBROUTINE CRAMAT (AM'AT, COMPL, POISSON)
C CONSTRUCT THE 6 X 6 COMPLIANCE MATRIX

DIMENSION AMAT(400) ,COMPL(6,6)

DO 908 1=1,36

908 AMAT(I) =0.
AMAT(1) = COMPL(l,l)
AMAT(2) = COMPL(1,2)
AMAT(3) = -POISSON
AMAT(4) = 2.*COMPL(1,3)
AMAT(7) =COMPL(2,1)
AMAT(8) - COMPL(2,2)

S. AMAT(9) = -POISSON
AMAT(10) = 2.*COMPL(2,3)
AMAT(13) = -POISSON
AMAT(14) = -POISSON
AMAT(15) = 1.
AMAT(19) = COMPL(3,1)
AMAT (20) =COMPL(3,2)
AMAT(22) = 2.*COMPL(3,3)
AMAT(29) = 2-.*(1.+POISSON)
AMAT(36) = 2.*(l.s+POISSON)
WRITE (6,1909) (AMAT(I),I=1,36)

'V1909 FORMAT (' COMPLIANCE MATRIX =',1P6E12.5120X,6El2.5120X,6El2.5/
1 20X,6El2.5/20X,6El2.5/20X,6E12.5)
END

0
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SUBROUTINE CPCOMP (IBUG)
cCONSTRUCT THE COMPLIANCE MATRIX

C 1,1 = 1111; 1,2 - 1122; 1,3 = 1112; ... 3,3 =1212

INCLUDE '$DISK3: [SEAMAN.CRACK]KCKCOM.FOR'
C

DO 908 I=1,36
908 AMAT(I) = 0.

AMAT(1) = 1.+PI/SAREA*SUM(1,1)
AMAT(2) = -POISSON+PI/SAREA*SUM(1,2)
AMAT(3) = -POISSON
AMAT(4) = PI/SAREA*SUM(1,3)
AMAT(7) = -POISSON+PI/SAREA*SUM(2,1)
AMAT(8) = 1.+PI/SAREA*SUM(2,2)
AMAT(9) = -POISSON
AMAT(10) = PI/SAREA*SUM(2,3)
AMAT(13) = -POISSON
AMAT(14) = -POISSON
AMAT(15) = 1.
AMAT(19) = PI/SAREA*SUM(3,1)
AMAT(20) = PI/SAREA*SUM(3,2)
AMAT(22) = 2.*(1.+POISSON)+PI/SAREA*SUM(3,3)

-,AMAT(29) = 2.*(1.+POISSON)
AMAT(36) = 2.*(1.+*POISSON)

* WRITE (6,1908)
1908 FORMAT (' *******COMPLIANCE AND STIFFNESS MATRICES FOR',

1 ' INTERACTING CRACKS, ACCORDING TO KACHANOVs METHOD ****~

WRITE (6,1909) (AMAT(I),I=1,36)
1909 FORMAT (' COMPLIANCE MATRIX =',lP6E12.5,' FROM CRCOMP 909'

1 /20X,6El2.5/20X,6El2.5/20X,6E12.5/20X,6E12.5/20X,6E12.5)
END
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SUBROUTINE CRFORC (IBUG)

NC COMPUTE THE STRESSES DUE TO THE EXTERNAL LOADING

C
INCLUDE '$DISK3: [SEAMAN.CRACK]KCKCOM.FOR'

C
C FILL THE FORCE ARRAY WITH STRESSES ON EACH CRACK

C FORCE( +1) IS THE NORMAL COMPONENT, FORCE( +2) THE SHEAR COMP.

DO 200 NC = 1,NCRACK

FORCE(2*NC-2+1) = SXX*COSTH(NC)**2 + 2.*SXY*COSTH(NC)*SINTH(NC) +

1 SYY*SINTH (NC) **2

FORCE(2*NC-2+2) = -(SXX-SYY)*SINTH(NC)*COSTH(NC) +

1 SXY* (COSTH (NC) **2-SINTH (NC) **2)

200 CONTINUE
KROW = 2*NCRACK
IF (IBUG .EQ. 0) GO TO 210

WRITE (6,1504) SXX,SYY,SXY
WRITE (6,1507) (FORCE(I),I-1,KROW)

1504 FORMAT (' FORC-205 FORCE VECTOR: NORMAL AND SHEAR STRESS ACTING ',

1 'ON EACH CRACK FOR INPUT SXX, SYY, SXY=',IP3EO.3/1OX,5X,

L 'NORMAL' , 10X, 'SHEAR')

1507 FORMAT (10X,1P2E15.7)

210 CONTINUE

END

J
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SUBROUTINE CRK1 (IBUG)
C DETERMINATION OF TRACTIONS ON THE CRACK FACES IN PREPARATION FOR
C COMPUTING THE KlC VALUES.
C

INCLUDE '$DISK3: [SEAMAN.CRACK)KCKCOM.FOR'
C
C CONSTRUCT THE ARRAYS (SP AND ST) OF STRESSES AT POINTS ALONG
C THE NC CRACK.

DO 600 NC = 1,NCRACK
II = 2*(NC-1)
DXEL = (XCRACK (NC, 3) -XCRACK (NC, 1)) /2.
DYEL = (YCRACK(NC,3)-YCRACK(NC,1))/2.
DO 520 N = 1,NINTRV
SUMN(N) = 0.
SUMT(N) = 0.

520 CONTINUE
Do 580 J = 1,NCRACK
jJ = 2*(J-1)
IF (NC .EQ. J) GO To 580
SINA =SINTH (NC) *COSTH (3)-SINTE (J) *COSTH (NC)
COSA =COSTH (NC) *COSTH (J) +SINTH (NC) *SINTH (J)
SINA2 =SINA**2

COSA2 =COSA**2

SINCOSA = SINA*COSA
IF (IBUG .GT. 2) WRITE (6,1510) NC,J,SINA,COSA

1510 FORMAT (' Kl-510 NC=',14,1 J=',I4,' SINA,COSA=',lP2E12.5)
DO 570 N - 1,NINTRV
XI - COS((2*(NINTRV+1-N)-)*PI/(2.*NINTRV))
XID(N) = XI
XL = XCR(NC) + XI*DXEL
YL = YCR(NC) + XI*DYEL

C
C CALL -TRACTN- TO DETERMINE THE TRACTIONS ON THE CRACK FACES

CALL TRACTN (LS,NC,J,XL,YL,XCR(J) ,YCR(J) ,SINTH,COSTH, ELCRAK (3),
1 SXXN, SYYN, SXYN, SXXT, SYYT, SXYT, IBUG)

C
IF (IBUG .GT. 2) WRITE (6,1568) NC,J,N,SXXN,SYYN,SXYN,SXXT,SYYT,
1 SXYT

1568 FORMAT (V Kl-568 NC,J,N=',314,' SXXN,Y,XY=',lP3El2.5,
1 ' SXXT,Y,XY=',3E12.5)
SNN(NC,J,N) = SXXN*COSA2 + SYYN*SINA2 + 2.*SXYN*SINCOSA

* STN(NC,J,N) = -(SXXN-SYYN)*SINCOSA + SXYN*(COSA2-SINA2)
SNT(NC,J,N) = SXXT*COSA2 + SYYT*SINA2 + 2.*SXYT*SINCOSA
STT(NC,J,N) = -(SXXT-SYYT) *SINCOSA + SXYT* (COSA2-SINA2)
IF (IBUG .GT. 2) WRITE (6,1540) SNN(NC,J,N),STN(NC,J,N),

1 SNT(NC,J,N),STT(NC,J,N)
1540 FORMAT ('Kl-540 SNN,STN=',1P2E12.5,' SNT,STT=',2E12.5)

SUMN(N) =SUMN(N) + SNN(NC,J,N)*PL(2*J-1) + SNT(NC,J,N)*PL(2*j)
SUMT(N) =SUMT(N) + STN(NC,J,N)*PL(2*J-1) + STT NC,J,N)*PL(2*J)

570 CONTINUE
*580 CONTINUE

DO 585 N = 1,NINTRV
SP(NC,N) = FORCE(2*NC-1) + SUMN(N)
ST(NC,N) = FORCE(2*NC) + SUMT(N)

585 CONTINUE
A590 CONTINUE

600 CONTINUE
END
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SUBROUTINE CRK2 (NC, IBUG)
C COMPUTE THE CRACK TIP STRESS INTENSITY FACTORS
C

INCLUDE '$DISK3: [SEAMAN.CRACK)KCKCOM.FOR'
C

WRITE (6,1605) NC
1605 FORMAT (P'***********I40,***********~

1 ' CRACK TIP STRESS INTENSITIES AND CRACK SHAPES FOR'
2 'CRACK NO.',I2,' WRITTEN BY CRK2'/)
AKI (NC, 1) =0.
AK1(NC,2) -0.
AK2 (NC, 1) -0.
AK2(NC,2) =0.
DO 660 N = 1,NINTRV
AKI(NC,l) -AK1(NC,1) + (1.4XID(N))*SP(NC,N)
AK1(NC,2) -AK1(NC,2) + (1.-XID(N))*SP(NC,N)
AK2(NC,l) -AK2(NC,l) + (1.+XID(N))*ST(NC,N)
AK2(NC,2) -AK2(NC,2) + (1.-XID(N))*ST(NC,N)
IF (IBUG .GE. 2) WRITE (6,1567) NC,N,AK1(NC,1),AX1(NC,2),

1 AK2(NC,1),AK2(NC,2),XID(N),SP(NC,N),ST(NC,N)
1567 FORMAT (' K2-567 NC,N=1,214,' K1=',1P2E10.3,' K2=',2E10.3,

1 /f XID=',E1O.3,' SP,ST=',2E10.3)
660 CONTINUE

SQPIL = SQRT(PI*ELCRAK(NC))
AK1(NC,1) - AK1(NC,1)/NINTRV*SQPIL
AK1(NC,2) =AK1(NC,2)/NINTRV*SQPIL
AK2(NC,l) -AK2(NC,1)/NINTRV*SQPIL
AK2(NC,2) - AK2(NC,2)/NINTRV*SQPIL
PAVG -SXX*COSTH (NC) **2+SYY*SINTH (NC) **2
I +2. *SXY*SINTH (NC) *COSTH (NC)
AK10 - SQPIL*PAVG
WRITE (6,1702) AK1(NC,1),AK1(NC,2),AK1O,AK2(NC,1),AK2(NC,2)

1702 FORMAT (' K FACTORS',3X,'RIGHT TIP',3X,' LEFT TIP',4X,'ISOLATED',
1 ' WRITTEN BY CRK2'/
2 ' Ki =',1P3El2.5/
3 ' K2 =',2E12.5)
IF (ABS(AK1O) .LT. i.E-10) RETURN
AK11 AKi (NC, 1) /AK1O
AK12 -AK1(NC,2)/AK1O
WRITE (6,1704) AK11,AK12

1704 FORMAT ('K1/K1O',3H'S=,lP2E12.5)

END
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SUBROUTINE CRNINT (IBUG, SINALF, COSALF)
C COMPUTE COMPLIANCE MATRIX FOR NON-INTERACTING CRACKS
C

INCLUDE '$DISK3: [SEAMAN.CRACKJKCKCOM.FORI
C

SXJM(1,1) = 0.
SUM(2,1) = 0.
SUM(3,1) =0.
DO 10 NC = 1,NCRACK
SUM(1,1) = SUM(1,1)+ELCRAK(NC)**2*(COSTH(NC)*COSALF +

1 SINTH(NC)*SINALF)**2
SUM(2,1) = SUM(2 '1)+ELCRAK(NC)**2*(SINTH(NC)*COSALF-

1 COSTH (NC) *SINALF) **2
SUM(3,1) = SUM(3,1)+ELCRAK(NC)**2

10 CONTINUE
DO 50 1=1,36

50 AMAT(I) = 0.
AMAT(l) = 1.+PI/SAREA*SUM(l,1)
AMAT(2) = -POISSON
AMAT(3) = -POISSON
AMAT(4) = 0.
AMAT(7) = -POISSON
AMAT(8) = 1.+PI/SAREA*SUM(2,1)
AMAT(9) =-POISSON
AMAT(10) =0.
AMAT(13) = -POISSON
AMAT(14) - -POISSON
AMAT(15) -1.
AMAT(19) =0.
AMAT(20) -0.
AMAT(22) = 2.*(1.+POISSON)+PI/SAREA*SUM(3,1)
AMAT (29) -2.*(l.+POISSON)
AMAT(36) -2.*(l.+POISSON)
WRITE (6,1908)

1908 FORMAT (' ***** COMPLIANCE AND STIFFNESS MATRICES FOR NONINTERA',
1 'CTING CRACKS *****I)

WRITE (6,1909) (AMAT(I),I=1,36)
1909 FORMAT (' COMPLIANCE MATRIX =',lP6E12.5,' FROM CRNINT 909'

1 /20X,6E12.5/20X,6E12.5/20X,6E12.5/20X,6E12.5/20x,6E12.5)
END
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SUBROUTINE CRSHAP (NC,IBUG)
C COMPUTATION OF THE CRACK SHAPES

INCLUDE '$DISK3: [SEAMAN.CRACK)KCKCOM.FORI
C
C COMPUTATION OF THE ELLIPTIC SHAPE COEFFICIENTS

SQPIL = SQRT(PI*ELCRAK(NC))
SHAPEA (NC, 1) = 0.
SHAPEB (NC, 1) = 0.
SHAPEA(NC,2) = 0.
SHAPEB (NC, 2) = 0.
SHAPES(NCfl) = 2.*PL(2*NC-1) - 0.5*(AK1(NC,1)+AK1(NC,2))/SQPIL
IF (ABS(AKI(NC,1)+AK1(NC,2)) .LT. 1.) GO TO 665
SHAPEA(NC,1) = (AK1(NC,l) - AK1(NC,2))/(4.*PL(2*NC-1)*SQPIL

1 - AK1(NC.1) - AK1(NC,2))
SHAPEB(NC,l) = 2.*(AK1(NCf1) + AK1(NC,2) - 2.*PL(2*NC-1)*SQPIL)/

1 (4.*PL(2*NC-1)*SQPIL - AK1(NC,l) - AK1(NC,2))
665 SHAPES(NC,2) = 2.*PL(2*NC) - 0.5*(.?&J2(NCl)+Aj2(NC,2))ISQPIL

IF (ABS(AK2(NC,1)+AK2(NC,2)) .LT. 1..) GO TO 670
SHAPEA(NC,2) = (AK2(NC,l) - AK2(NC,2))/(4.*PL(2*NC)*SQPIL

1 - AK2(NC,1) - AK2(NC,2))
SHAPEB(NC,2) = 2.*(AK2(NCfl) + AK2(NC,2) - 2.*PL(2*NC)*SQPIL)I

1 (4.*PL(2*NC)*SQPIL - AK2(NC,1) - AK2(NC,2))
S~~ C----------------------------------------------------------------------

C NORMAL AND SHEAR OPENING AREA
C-----------------------------------------------------------------------

670 CONTINUE
WRITE (6,1670) (SHAPES(NC,I),SHAPEA(NCI),SHAPEB(NCI),I=1,2)

1670 FORMAT (P' SHAP 670 SHAPE FUNCTIONS IN THE FORM 4L/E*S(1+Ax+Bx2',
1 ')Ellipse'/' FACTORS FOR OPENING ARE S, A, B =',1P3E11.3/
2 f FACTORS FOR SHEARING ARE S, A, B =',3E11.3)

C **** RETURN IN CASE PRINTING IS NOT REQUESTED.
IF (IBUG .LE. 0) RETURN
AREA= 2.*PI*ELCRAK(NC)*SHAPES(NC,1)/EMOD*(1.+0.25*SHAPEB(NC,1))
AREAT= 2.*PI*ELCRAK(NC)*SHAPES(NC,2)/EMOD*(1.+O.25*SHAPEB(NC,2))

* C DISPLACEMENTS OF CRACKS
DXX = 0.5*(ARA*COSTH(NC)**2 + APEAT*SINTH(NC)*COSTH(NC))
DYY = 0.5* (ARA*SINTH (NC) **2 - AREAT*SINTH (NC) *COSTH (NC))
DXY - 0.5*AREA*SINTH(NC)*COSTH(NC) - 0.25*AREAT*(COSTH(NC)**2
1 -SINTH(NC)**2)
WRITE (6,1677) NC, AREA, AREAT, DXX, DYY, DXY

1677 FORMAT (If SHAP 677 OPENINGS FOR CRACK ',13,' AREA,AREAT=',
1 lP2E11.3,' DXX, DYY, DXY=',3E11.3)

* ~ ~ C----------------------------------------------------------------------
C COMPUTATION OF CRACK SHAPES
C-----------------------------------------------------------------------

NPLOT = 20
OPISO - 4.*ELCRAK(NC)/EMOD*PAVG
VSHEAR - 0.
XOL =-1.
VNORM -0.
WRITE (6,1688) NC

:.~ ~ 1688 FORMAT U' SHAP 688 CRACK SHAPE FOR CRACK NO 1,13/4X,'N'f8X,'X/L',
1 9X, 'BN' ,9X, 'BT' ,6X, 'BNISO' ,5X, 'VSHEAR' ,6X, 'VNORM' ,4X, 'ELLIPSE')

.7,= N1
BNISO - 0.
WRITE (7,1703) N,XOL,VSHEAR,VNORM,BNISO
WRITE (6, 1703) N,XOL,VSHEAR,VNORM,BNISOVSHEAR,
1 VNORM,BNISO
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DO 680 N = 2,NPLOT
RATIO = FLOAT(N4-l)/FLOAT(NPLOT)
XOL = COS((l.-RATIO)*PI)
ELLIP =SQRT(l.-XOL**2)
VNORM =(1.+ SHAPEA(NC,1)*XOL + SHAPEB(NC,l)*XOL**2)*ELLIP
VSHEAR = (1.+ SHAPEA(NC,2)*XOL + SHAPEB(NC,2)*XOL**2)*ELLIP
BN = 4. *ELCRAK (NC) /EMOD*SHAPES (NC, 1) *VNOPJ
BT = 4.*ELCRAK(NC) /EMOD*SHAPES (NC,2) *VSHEAR
BNISO = OPISO*ELLIP
WRITE (6,1703) N,XOL,BN,BT,BNISO,VSHEAR,VNORM,
1 ELLIP

1703 FORMAT (15,lPlOE11.3)
WRITE (7, 1703) N,XOL,VSHEAR,VNORM,ELLIP

680 CONTINUE
N = NPLOT+1
XOL = 1.
VSHEAR =0.

VNORM =0.

WRITE (6, 1703) N,XOL,VSHEAR,VNORM,VNORMVSHEAR,
1VNORM,VNORM

1WRITE (7, 1703) N,XOL,VSHEAR,VNORM,VNORM
WRITE (6,1684)

1684 FORMAT (I DEFINITIONS: BN and BT are normal (+ in opening) and
1 shear (+ CCW) displacement for the cracks (cm), (FROM SHAP 684)'
2 /14X,'BNISO is the normal opening for ',

3 'an isolated crack (cm)'/14X,'VNORM and VSHEAR are normalized',
4 ' opening and shearing distortion'/14X,'ELLIPSE is the
5 'normalized elliptic distortion')
END
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SUBROUTINE CRSTIF (IBUG, SINALF,COSALF)
C Computation of SUM Lk^'2 (NkTk + TkNk) for each unit stress loading.
C

INCLUDE '$DISK3: [SEAMAN.CRACKJKCKCOM.FOR'
C
C Construct STRESS TENSORS in X-Y plane corresponding to unit
C Stresses S11, S22, and S12 in the orthotropic axes.
C CCW Rotation of the STRESS back to X-Y axes by an angle -ALF.

DO 900 ILOAD =1,3
IF (ILOAD .GT. 1) GO TO 800

C TENSOR FOR THE Sll LOADING
SXX = COSALF**2
SYY - SINALF**2
SXY -SINALF*COSALF
GO TO 820

800 IF (ILOAD .GT. 2) GO TO 810
C TENSOR FOR THE S22 LOADING

SXX -SINALF**2
SYY = COSALF**2
SXY = SINALF*COSALF
GO TO 820

C TENSOR FOR THE S12 LOADING
810 CONTINUE

SXX - 2.*SINALF*COSALF
SYY -2.*SINALF*COSALF

A SXY - COSALF**2-SINALF**2
820 CONTINUE

C-----------------------------------------------------------------------
C FILL THE FORCE ARRAY WITH STRESSES ON EACH CRACK
C FORCE( +1) IS THE NORMAL COMPONENT, FORCE( +2) THE SHEAR COMP.
C-----------------------------------------------------------------------

CALL CRFORC (IBUG)

Do 840 I - 1,KROW
840 PL (I) = FORCE (1)

KEND = 4*NCRACK**2
DO 845 K =1,KEND

845 BMAT(K) =AMAT (K)
C-----------------------------------------------------------------------
C COMPUTE THE STRESSES ON EACH MICROCRACK, ACCOUNTING FOR BOTH THE
C APPLIED LOAD AND ALL OTHER CRACKS. -FORCE- IS APPLIED, -PL- IS
C THE STRESS (NORMAL, SHEAR) ON EACH CRACK.

* ~ ~ C----------------------------------------------------------------------
CALL SIMQ (BMAT,PL, 2*NCRACK,KSTOP)
IF (IBUG .GT. 0) THEN

WRITE (6,1841) ILOAD, SXX, SYY, SKY
1841 FORMAT (/' STIF 841 ILOAD =',13,r SXX,SYY,SXY=',123E15.8)

-. WRITE (6,1845) (FORCE(I),I-1,KROW)
1845 FORMAT (I STIF 845 FORCE (N, TAU) = ',1P7E15.8)

*WRITE (6,1843) (PL(I),I=1,KROW)
1843 FORMAT (I STIF 843 P (N, TAU) -',1P7E15.8)

WRITE (6,1848)
1848 FORMAT (I (STIF) AMAT MATRIX'

DO 850 I - 1,KROW
KK = (I-1)*KROW

* WRITE (6,1850) (AMAT(KK+L),L=1,KROW)
850 CONTINUE

4 1850 FORMAT (1P7E15.8/(5X,7E15.8))
ENDIF
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C Ti IS STRESS IN THE 1 DIRECTION, T2 IN THE 2 DIRECTION
C IN THE ORTHOTROPIC COORDINATES

N SUM(1,ILOAD) = 0.
SUJM(2, ILOAD) = 0.
SUM(3,ILOAD) = 0.
DO 860 NC = 1,NCRACK

% COSTHA = COSTH(NC)*COSALF + SINTH(NC)*SINALF
SINTHA = SINTH(NC)*COSALF - COSTH(NC)*SINALF
Ti = PL(2*NC-2+1)*COSTHA - PL(2*NC-2+2)*SINTHA
T2 = PL(2*NC-2+i)*SINTHA + PL(2*NC-2+2)*COSTHA
EL2 = ELCRAK(NC)**2
IF (IBUG .GT. 0) WRITE (6,1852) NC, Ti,T2

1852 FORMAT (' STIF 852 CRACK NO',12,' STRESSES IN 1 AND 2 DIRECTIONS,'
1 ' Ti AND T2 =',lP2Ei2.5)

C-----------------------------------------------------------------------
C SUM THE STRESS QUANTITIES FOR ALL CRACKS TO CONSTRUCT THE
C SUM L^'2 (NkTk + TkNk) terms
C-----------------------------------------------------------------------

DSUM. = EL2*Tl*COSTHA
SUM(IILOAD) = SUM(1,ILOAD) + DSUMi
DSUM2 = EL2*T2*SINTHA
SUM(2,ILOAD) = SUM(2,ILOAD) + DSUM2
DSUM3 = EL2*(T2*COSTHA + Tl*SINTHA)
SUM(3,ILOAD) = SUM(3,ILOAD) + DSUM3
IF (IBUG .GT. 1) WRITE (6,1858) ILOAD,DSUM1,DSUM2,DSUM3,

1 (SUM(I,ILOAD),I=1,3)

1858 FORMAT (' STIF 858 ILOAD=',I3,' DSUMs =',lP3E12.5,' SUM=',

V 860 CONTINUE

900 CONTINUE
END
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SUBROUTINE CRSTRS (IBUG)
C COMPUTATION OF THE STRESSES ON EACH MICROCRACK
C

INCLUDE 'SDISK3: (SEAMAN.CRACKIJKCKCOM.FOR'
C
C-----------------------------------------------------------------------
C BEGIN LOOP TO COMPUTE THE L(I,J) MATRIX

N~~ C----------------------------------------------------------------------
C I IS THE INDICATOR FOR THE MICROCRACK OF INTEREST
C J IS ANOTHER MICROCRACK

NCR2 =2*NCRACK
ANINTR3 = 3*NINTRV
DO 500 NC - 1,NCRACK
IN = 2*NC-1
IT = 2*NC
DX = (XCRACK (NC, 3) -XCRACK (NC, 1)) /NINTRV
DY = (YCRACK(NC,3)-YCRACK(NC,1) )/NINTRV
DO 450 J -1,NCRACK
JN =2*J-1
JT = 2*J
IF (NC .NE. J) GO TO 220
AMAT((JN-1)*NCR2+IN) = 1.
AMAT((JT-1)*NCR2+IN) = 0.
AMAT((JN-1)*NCR2+IT) - 0.

-. - AMAT((JT-1)*NCR2+IT) = 1.
GO TO 450

220 CONTINUE
7 ~SINA = SINTH(NC) *COSTH(J) -SINTH (J) *COSTH (NC)

COSA = COSTH (NC) *COSTH(J) +SINTH (NC) *SINTH(J)
SINA2 = SINA**2
COSA2 = COSA**2
SINCOSA =SINA*COSA

SUMXXN 0.
SUMYYN :0.

SUMXYN 0.
SUMXXT =0.

SUMYYT =0.

SUMXYT =0.

NINTRV1 =NINTRV+1

DO 300 N - 1,NINTRV.
XL = XCRACK(NC,1)+(N-1)*DX

NYL - YCRACK (NC, 1) +(N-1) *DY
* C

C CALL -TRACTN- TO DETERMINE THE TRACTIONS ON THE CRACK FACES
CALL TRACTN (LS,NC,J,XL,YL,XCR(J),YCR(J),SINTH,COSTH,ELCRAK(J),
I SXXN, SYYN, SXYN, SXXT, SYYT, SXYT, IBUG)

C
IF (IBUG .GT. 2) WRITE (6,1297) NC,J,N,SXXN,SYYN,SXYN,SXXT,SYYT,

1 SXYT
* 1297 FORMAT (' STRS 297 NC,J,N=',314,' SXXN,Y,XY-',lP3El2.5,

1 ' SXXT,Y,XY-',3El2.5)
COEF -1.
IF (N .GT. 1 .AND. N .LT. NINTRV1) COEF =2.+2.*MOD(N-1,2)

SUMXXN - SUMXXN + COEF*SXXN
SUMYYN = SUMYYN + COEF*SYYN
SUMXYN = SUMXYN + COEF*SXYN
SUMXXT - SUMXXT + COEF*SXXT
SUMYYT - SUMYYT + COEF*SYYT
SUMXYT - SUMXYT + COEF*SXYT
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300 CONTINUE
C CONSTRUCT THE STRESSES ON THE NC CRACK IN THE ORIENTATION OF THE

C NC CRACK: STRNN AND STRNT - NORMAL STRESS ON NC FROM NORMAL AND

C SHEAR ON J, AND STRTN AND STRTT - SHEAR ON NC FROM NORMAL AND

C SHEAR ON J.

STRNN = (SUMXXN*COSA2 + SUMYYN*SINA2 + 2.*SUMXYN*SINCOSA)/ANINTR3
STRTN = (- (SUMXXN-SUMYYN) *SINCOSA + SUMXYN* (COSA2-SINA2) )/ANINTR3
STRNT = (SUMXXT*COSA2 + SUMYYT*SINA2 + 2.*SUMXYT*SINCOSA)/ANINTR3

STRTT = (-(SUMXXT-SUMYYT)*SINCOSA + SUMXYT*(COSA2-SINA2))/ANINTR3

C CONSTRUCT THE -A- MATRIX: A(EFFECT,CAUSE)
AMAT((JN-1)*NCR2+IN) = -STRNN

AMAT((JT-1)*NCR2+IN) = -STRNT

AMAT((JN-1)*NCR2+IT) = -STRTN

AMAT((JT-1)*NCR2+IT) = -STRTT

450 CONTINUE
500 CONTINUE

KROW = 2*NCRACK

KEND = 4*NCRACK**2
IF (IBUG .EQ. 0) GO TO 508

* WRITE (6,1502)
'I DO 505 1= 1,KROW

KK = (I-1)*KROW

WRITE (6,1503) (AMAT(KK+L),L=1,KROW)

505 CONTINUE
0 WRITE (6,1500)

DO 506 1 = 1,KROW

WRITE (6,1503) (TL(I,J),J=1,KROW)

506 CONTINUE

508 CONTINUE
DO 509 K =1,KEND

509 BMAT(K) AMAT(K)
1500 FORMAT ('STRS 500, -TL- MATRIX')

1502 FORMAT ('STRS 502, -AMAT- MATRIX')
1503 FORMAT (1P7E15.8/(5X,7E15.8))

C---------------------------------------------------------------------------
C SOLUTION FOR STRESSES ON EACH MICROCRACK, CONSIDERING BOTH

C THE APPLIED STRESS FIELD AND ALL OTHER CRACKS

C PL(l) = NORMAL STRESS AND PL(2) = SHEAR STRESS
C---------------------------------------------------------------------------

DO 510 I = 1,KROW
510 PL(I) = FORCE(I)

CALL SIMQ (BMAT, PL, 2*NCRACK, KSTOP)

IF (IBUG .GT. 0) WRITE (6,1550) (PL(I),I=1,KROW)

1550 FORMAT (' STRS 550, AVERAGE FORCE ACTING ON EACH CRACK: '

1 'P (N, TAU)'/19X,'NORMAL',IOX,'SHEAR'/(10X,lP2El5.8)

* END
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SUBROUTINE MINV (A, N, D,L, M)
IMPLICIT REAL*8 (A-H,O-Z)
DIMENSION A(1),L(l),M(1)

C SEARCH FOR LARGEST ELEMENT
D=l.
NK=-N
DO 80 K=1,N
NK=NK+N
L(K)=K

1% M(K)=K
KK=NK+K
BIGA=A(KK)
DO 20 J=K,N
IZ=N*(J-1)
DO 20 I=K,N

10 IF (ABS(BIGA)-ABS(A(IJ))) 15,20,20
15 BIGA=A(IJ)

L(K)=I
M(K)=J

20 CONTINUE
C INTERCHANGE ROWS

J=L(K)
* IF (J-K) 35,35,25

25 KI=K-N
DO 30 I=1,N
KI=KI+N
HOLD=-A(KI)
JI=KI-K+J
A(KI)=A(JI)

30 A(JI)=HOLD
C INTERCHANGE COLUMNS
35 I=M(K)

IF (I-K) 45,45,38
38 JP=N*(I-1)

DO 40 J=1,N
JK=NK+J
JI=JP+J
HOLD=-A(JK)
A(JK)=A(JI)

'A40 A(JI)=HOLD
C DIVIDE COLUMN BY MINUS PIVOT (VALUE OF PIVOT ELEMENT IS
C CONTAINED IN BIGA)

*45 IF (ABS(BIGA)-l.E-20) 46,46,48
46 D=0.

WRITE (6,446) BIGA
V~. RETURN

48 DO 55 I=1,N
IF (I-K) 50,55,50

50 IK=NK+I

55 CONTINUE
C REDUCE MATRIX

DO 65 I=1,N
IK=NK+I

HOLD-A(IK)
* IJ=I-N

DO 65 J-1,N
IJ=IJ+N
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IF ( - ) 6 , 5 6

60 IF (I-K) 60,65,60

62 KJ=IJ-I+K
A(IJ) =HOLD*A(KJ) +A(IJ)

65 CONTINUE

C DIVIDE ROW BY PIVOT
KJ=K-N

-~ DO 75 J=1,N

KJ=KJ+N
IF (J-K) 70, 75, 70

70 A(KJ)=A(KJ)/BIGA
75 CONTINUE

C PRODUCT OF PIVOTS AND REPLACE PIVOT BY RECIPROCAL

D=D*BIGA
A (KK) =1./BIGA

*80 CONTINUE

*C FINAL ROW AND COLUMN INTERCHANGE

K=N

100 K=K-1
IF (K) 150,150,105

105 I=L(K)
IF (I-K) 120,120,108

108 JQ=N*(K-1)
JR=N* (I-i)

* DO 110 J=1,N
JK=JQ+J
HOLD=A(JK)

* JI=JR+J
A (JK) --A (JI)

110 A(JI)=HOLD

120 J=M(K)
IF (J-K) 100,100,125

125 KI=K-N
DO 130 I=1,N

KI=KI$N
HOLD-A(KI)

JI=KI -K+J

a.130 A(JI)=HOLD

N GO TO 100
150 RETURN

446 FORMAT(/' MINV -MATRIX IS SINGULAR, BIGA ',1PE12.4/)
END
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SUBROUTINE SIMO (A, B, N,KS)

IMPLICIT REAL*8 (A-H,O-Z)

DIMENSION A(l),B(l)

C FORWARD SOLUTION

TOL=0.0

KS=0

JJ=-N

DO 65 J-1,N
JY=J+1

JJ=JJ+N+ 1

BIGA=0.
IT=JJ-J

DO 30 I=J,N

C SEARCH FOR MAXIMUM COEFFICIENT IN COLUMN

IJ=IT+I
IF (ABS(BIGA)-ABS(A(IJ))) 20,30,30

20 BIGA=A(IJ)

IMAX=I

*30 CONTINUE

C TEST FOR PIVOT LESS THAN TOLERANCE (SINGULAR MATRIX)

IF (ABS(BIGA)-TOL) 35,35,40
35 KS=l

RETURN

*C INTERCHANGE ROWS IF NECESSARY

40 IP=J+N*(J-2)

IT=IMAX-J

4 DO 50 K=J,N
Il=Il+N

* 12=11+IT

SAVE=A(I1)
A(11) =A(12)

A(12) =SAVE
C DIVIDE EQUATION BY LEADING COEFFICIENT

50 A(I1)=A(I1)/BIGA
SAVE=B (IMAX)
B (IMAX) =B (J)
B(J)=SAVE/BIGA

C ELIMINATE NEXT VARIABLE

IF (J-N) 55,70,55
55 IQS=N'*(J-1)

DO 65 IX-JY,N
IXJ=IQS+IX
IT=J-IX
DO 60 JX-JY,N
IXJX=N* (JX-1) +IX
JJX=-IXJX+IT

60 A(IXJX)=A(IXJX)-(A(IXJ)*A(JJX))

C BACK SOLUTION

*70 NY=N-1
IT=N*N
DO 80 J=1,NY

IA=IT-J

IB=N-J
IC=N
DO 80 K-1,J

* B(IB)-B(IBi.A(IA)*B(IC)
IA-IA-N

80 IC-IC-i
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SUBROUTINE TRACTN (LS,NC,J,XL,YL,XCR,YCR,SINTH,COSTH,EL,
1 SXXN, SYYN, SXYN, SXXT, SYYT, SXYT, IBUG)

o ROUTINE TO COMPUTE THE TRACT IONS ALONG THE LENGTH OF THE
C -NC- CRACK IN RESPONSE TO THE STRESSES FROM THE -J- CRACKS.
C CALLED BY KCRACK, WRITTEN BY L. SEAMAN ON JULY 29, 1987.

IMPLICIT REAL*8 (A-H,O-Z)
DIMENSION SINTH(10),COSTH(10)
X = (XL-XCR) *SINTH (J) -(YL-YCR) *COSTH (J)
Y = (XL-XCR) *COSTH (J) +(YL-YCR) *SINTH (J)
AL = SQRT((X-EL)**2+Y**2)
GL = SQRT((X+EL)**2+Y**2)
DL = SQRT(2.*(X**2+Y**2-EL**2 +
I. SQRT((X**2+Y**2+EL**2)**2 - 4.*(X*EL)**2)))
IF (IBUG .GT. 2) WRITE (6,1010) LS,NC,J,XL,YL,XCR,YCR,X,Y,
1 SINTH(J),COSTH(J),SINTH(NC),COSTH(NC), SINA, COSA, EL,
2 AL,DL,GL

1010 FORMAT (' TRACTN LS,NC,J=',313,' XL,YL=',lP2El2.5,' XCR,YCR=',
1 2E12.5,' X,Y=',2E12.51' SINJ,COSJ=',2E10.3,' SINNC,COSNC=',
2 2E10.3,' SINA,COSA-',2El0.3,' EL=',E10.3/' AL,DL,GL=',3E10.3)

C COMPUTE Gi = Ii, FACTORS IN THE "STANDARD" STRESS FIELDS
G1 = 4.*EL**3* (GL-AL)/ (DL* (AL+GL+DL) **2)
G2 = 4.*EL**2/(DL*(AL+GL+DL))
G3 = 2.*EL**3*(GL-AL)/(AL*GL*DL**3)
G4 = 2. *EL**2* (AL+GL) /(AL*GL*DL**3)
G5 = 0.5*EL**3*(3.*AL*GL*(AL+GL)**2*(GL-AL)+DL**2*(GL**3-AL**3) )/
1 ( (AL*GL) **3*DL**5)
G6 = 0.5*EL**2*((AL**3+GL**3)*DL**2 + 3.*AL*GL*(AL+GL)**3)/
1 ( (AL*GL) **3*DL**5)
IF (IBUG .GT. 2) WRITE (6,1020) G1,G2,G3,G4,G5,G6

1020 FORMAT (I TRACTN 20 Gl,2,3-',1P3E12.5,' G4,5,6=',3El2.5)
C COMPUTE SXX, SYY, SXY, THE STRESSES AT THE POINTS X,Y ON THE NC
C CRACK CAUSED BY CONSTANT NORMAL AND SHEARING STRESSES OF UNIT
C INTENSITY ON THE J CRACK. ORIENTATION IS WITH RESPECT TO THE
C J CRACK.

SXXN = G2 - 8.*Y**2*G4 + 8.*Y**4*G6
SYYN = G2 + 4.*Y**2*G4 - 8.*Y**4*G6
SXYN = 2.*(-Y*G3 + X*Y*G4 + 4.*Y**3*G5 - 4.*X*Y**3*G6)
SXXT = 2.*(3.*Y*G3 - 3.*X*Y*G4 - 4.*Y**3*G5 + 4.*X*Y**3*G6)
SYYT = 2.*(-Y*G3 + X*Y*G4 + 4.*Y**3*G5 - 4.*X*Y**3*G6)
SXYT = G2 - 8.*Y**2*G4 + 8.*Y**4*G6
IF (IBUG .GT. 2) WRITE (6,1030) SXXN,SYYN,SXYN,SXXT,SYYT,SXYT

1030 FORMAT (V TRACTN 30 SXXN,Y,XY=',1P3E12.5,' SXXT,Y,XY=',3E12.5)
4 RETURN

END
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